
Cost Model Workbench User Guide
Version 2019 R2

aPriori Version 2019 R2 2

Copyright

Copyright © 2020, aPriori Technologies, Inc. All rights reserved. aPriori Technologies, Inc., 300
Baker Avenue, Concord, MA 01742, USA.

Portions of this software were created under the direction of Professor Michael Philpott in the
Department of Mechanical and Industrial Engineering at the University of Illinois at Urbana-
Champaign.

Portions of this software copyright © 2000-2019 Tech Soft 3D.
Portions of this software copyright © 1995-2019 MySQL AB.
Portions of this software copyright © 2003-2019 Spatial Corporation.
Portions of this software copyright © 2006-2019 Siemens PLM.

The following trademarks and service marks are the property of aPriori Technologies, Inc.:
aPriori, Cost Ticker, True Cost Convergence, Cost Insight.

Portions of this software contain copyrighted information of third parties. Title thereto is retained,
and all rights therein are reserved, by the respective copyright owner. Third party software
included with the product is identified below.

Document usage

This publication, as well as the software described in it, is provided under license and may only
be used or copied in accordance with the terms of such license. The content of this publication is
provided for informational use only. It is subject to change without notice and should not be
construed as a commitment by aPriori Technologies, Inc. aPriori Technologies, Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in this publication.

Except as permitted by license, no part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, without the prior written permission of
aPriori Technologies, Inc.

The text and drawing set forth in this publication are the exclusive property of aPriori
Technologies, Inc.

Third parties

Unless otherwise noted, all references to company names in sample text are designed solely to
document the use of aPriori Technologies, Inc. products.

The brand names and product names used in this publication are the trademarks, registered
trademarks, service marks, or trade names of their respective owners. aPriori Technologies, Inc.
is not associated with any product or vendor mentioned in this publication unless otherwise noted.

This product includes additional third party software. All required third party and related software
licenses and attribution are included with the aPriori software. For a complete list, see file
“notices.txt” in the third-party-licenses sub-directory of the aPriori installation directory.

Software rights

The software is provided with Restricted Rights. Duplication by or disclosure to the U.S.
Government is subject to the restrictions as set forth in FAR 12.212 and DFAR 227.7202 related
to Commercial Computer Software and Commercial Computer Software Documentation, as
applicable. Licensee agrees to always include such legends whenever software is, or is deemed
to be, a deliverable under such a contract. The manufacturer is aPriori Technologies, Inc. with
offices at 300 Baker Avenue, Concord, MA 01742.

Document Information

Last updated February 5, 2020

The latest version of this document can be found at the aPriori Support HelpCenter
(requires registration): https://support.apriori.com/hc

https://support.apriori.com/hc

Contents aPriori User Guide

aPriori Version 2019 R2 3

Cost Model Workbench User Guide

About This Guide viii
Overview ... 9
Related documents .. 9
Typographic conventions ... 9
Feedback and customer support .. 10

1 Getting Started with the Cost Model Work Bench 11

Starting and Exiting the CMWB .. 12
Components of the CMWB Interface ... 15
Working with Cost Models ... 16

Opening and Closing Cost Models... 17
Importing and Exporting Cost Models .. 17
Overriding Cost Model Objects ... 17
Saving Cost Model Changes .. 17
Publishing and Reverting Cost Models .. 18

Working with Cost Model Data and Metadata .. 18
Working with Cost Model Logic .. 19

2 Working with Cost Model Data and Metadata 21

Navigating to Global Data .. 22
Navigating to the Data for a Process, Operation or Branch Node 23

Navigating from the Template Graph to the Data for a Given Node 23
Navigating from the Navigation Tree to the Data for a Given Process or Operation . 24
Navigating from the Navigation Tree to the Data for a Given Branch Node 25

Working with Plant Variables ... 26
Viewing and Modifying Cost Model Variables .. 27
Viewing and Modifying VPE Variables .. 28
Creating New Plant Variables .. 28
Deleting Plant Variables .. 29

Working with Lookup Tables .. 29
Navigating to Lookup Tables ... 30
Viewing and Modifying Lookup Tables ... 32
Viewing and Modifying Lookup Table Definitions .. 33
Creating Lookup Table Definitions .. 34
Deleting Lookup Table Definitions .. 35
Adding New Lookup Tables ... 35
Removing Lookup Tables .. 36

Working with Machine Metadata .. 36
Viewing and Modifying Machine Types .. 37
Adding Machine Types .. 39
Deleting Machine Types .. 39
Adding or Modifying a Machine Field for Multiple Processes 40

Contents aPriori User Guide

aPriori Version 2019 R2 4

Working with Material Metadata ... 43
Viewing and Modifying Material Types .. 44
Adding or Modifying a Material Field for Multiple Process Groups 45

Working with Material Stock Metadata ... 48
Viewing and Modifying Material Stock Types ... 49

Working with Tool Shop Metadata ... 50
Viewing and Modifying Tool Shop Types .. 51
Adding Tool Shop Types .. 52
Deleting Tool Shop Types .. 53
Associating a Tool Shop Type with a Process .. 53
Removing a Tool Shop Type from a Process ... 53

Working with Tool Material Metadata ... 54
Viewing and Modifying Tool Material Types... 55
Adding Tool Material Types .. 56
Deleting Tool Material Types .. 56

Working with Process Setup Options ... 57
Navigating to Process Setup Options .. 58
About Process Setup Options .. 59
Modifying Process Setup Options ... 60
Adding and Deleting Process Setup Options ... 61

Including and Excluding GCD Types ... 62
Working with Column Groups and Column Properties 63
Working with Node Attributes ... 65

Navigating to Node Attributes .. 65
Adding, Removing, and Modifying Node Attributes ... 66
Predefined Node Attributes .. 66

3 Working with Cost Model Logic 79

CSL Language Overview ... 80
Formulas .. 81
Rules .. 82
Advice Rules .. 82
Imports .. 84
Values .. 85
Expressions .. 85
Line Continuation .. 90
Comments ... 90
Searching Within and Across CSL Modules ... 91
Using the CSL Debugger .. 94
CSL Reference Information ... 108

Viewing and Editing CSL Modules ... 109
Navigating to Global CSL Modules .. 109
Navigating to the CSL Modules for a Given Node ... 110
Viewing CSL Modules .. 112
Editing CSL Modules .. 113

Contents aPriori User Guide

aPriori Version 2019 R2 5

Adding CSL Modules .. 116
Deleting CSL Modules.. 117

Creating and Deleting Processes, Operations, and Branch Nodes 117
Creating and Copying Processes ... 118
Creating and Copying Operations ... 123
Creating Branch Nodes .. 126
Deleting Processes, Operations, and Branch Nodes ... 127

Working with Formula Tables .. 128
Adding a Formula to the Formula Table ... 128
Controlling Whether a Custom Output Appears in the Part Details Tab 130

Template Pruning .. 131
Context of Evaluation .. 131
Example ... 132

Material Stock Selection .. 132
Context of Evaluation .. 133
Finding or Designating a Routing’s Stock Selector .. 133
Stock Selector Input .. 134
Stock Selector Outputs .. 134
Example ... 135

Process and Operation Optionality .. 136
Context of Evaluation .. 136
Example ... 137

Process and Operation Feasibility ... 140
Context of Evaluation .. 141
Examples ... 141

Machine Selection ... 143
Context of Evaluation .. 144
Example ... 144

Tool Selection .. 148
Process and Operation Taxonomy ... 148

Context of Evaluation .. 149
Example ... 149

Working with Zero-or-More Nodes ... 151
Working with Templates... 153

About Templates ... 153
Viewing and Editing Templates ... 155

4 Cost Engine Details 157

Hierarchies .. 158
Algorithm Overview .. 159
Process Template Expansion and Pruning .. 160
Material Stock Selection .. 160
Feasibility and Machine Selection .. 162
Operation Assignment ... 163

Contents aPriori User Guide

aPriori Version 2019 R2 6

Operation Costing .. 166
Process Costing .. 167

5 Cost Scripting Language Reference 168

Overview ... 169
Module Types .. 169
Module Contents... 170
Values and Expressions ... 171

Modules, Inputs, and Outputs .. 172
Syntax .. 173
Inputs .. 173
Outputs.. 183
Return Values .. 185

Imports .. 186
Formulas and Rules ... 187

Formulas .. 187
Set Blocks .. 188
Rules .. 189
Messages ... 190
Advice Rules .. 190
Advice .. 190
Function Definitions .. 191

Expressions ... 192
Arithmetic Expressions .. 192
String Expressions ... 193
Boolean Expressions .. 193
Conditional Expressions .. 194
Function Invocations ... 194
Query Expressions ... 195
Foreach Expressions .. 197
Like Expressions .. 199

Identifiers and Literals .. 200
Simple Identifiers .. 200
Complex Identifiers ... 200
Numerical Literals ... 200
String Literals ... 201
Boolean Literals ... 201

Comments and Line Continuation .. 201
Predefined Functions ... 202

Numeric Functions .. 202
String Functions ... 204
List Functions ... 206
Map Functions ... 207
Node Attribute Functions .. 208
Routing Navigation Functions ... 212

Contents aPriori User Guide

aPriori Version 2019 R2 7

Error Handling Functions... 212
Interpolation Function .. 213
Miscellaneous Functions ... 214

6 Common Task Examples 227

Adding a New Process to a Process Group ... 228
Creating a New Process from Scratch ... 228
Creating a New Process from an Existing Process .. 228
Copying the Process .. 229
Renaming the Operations ... 230
Adding Operations .. 231

Adding New Processes and Operations to Templates 232
Navigating to and Modifying Templates ... 232
Modifying the Process-level Routings ... 233
Modifying the Operation-level Routings ... 234

Defining and Modifying Machine Types ... 235
Defining a Machine Type for a New Process ... 235
Modifying a Machine Type—Padding Cycle Time ... 239
Modifying a Machine Type—Preferring One Class of Machines Over Another........ 240

Modifying Machine Selection ... 241
Removing unwanted machine checks ... 241
Preferring One Class of Machines Over Another .. 244

Adding Feasibility Rules... 245
Adding New Plant Variables .. 247

Adding Plant Variables for a New Process .. 247
Adding Plant Variables—Padding Cycle Time ... 249

Adding New Process Setup Options .. 250
Adding a Setup Option—Using CSL, Formula, and User Modes 250
Adding a Setup Option—Using List Mode to Access a Lookup Table 252
Adding a Setup Option—Padding Cycle Time ... 253

Adding Lookup Tables ... 255
Adding a Lookup Table Definition ... 255
Adding a Lookup Table .. 256

Modifying Taxonomy Modules ... 258
Modifying the Formula Table .. 258
Modifying the Cycle Time Formulas .. 261
Padding Cycle Time by Adding a Constant .. 263

Adding and Modifying Library Modules .. 265
Creating a New Library .. 265
Modifying a Library Module .. 266

Contents aPriori User Guide

aPriori Version 2019 R2 8

About This Guide

This section provides information about this User Guide, and the other ways in
which aPriori supports the aPriori application.

Key topics include:

▪ Overview

▪ Related documents

▪ Typographic conventions

▪ Feedback and customer support

About This Guide CMWB User Guide

aPriori Version 2019 R2 9

Overview
This User Guide contains detailed information about using aPriori’s Cost Model Work
Bench (CMWB) to customize cost models.

Related documents
In addition to this guide, you can find more information about the aPriori application in
the following documents:

▪ aPriori User Guide – This guide contains detailed information about the aPriori
solution. It is designed as a reference for your everyday work.

▪ aPriori Cost Model Guide – This guide contains detailed information about
process groups and includes a chapter on direct and indirect overhead. Note:
This is a new document as of 2015 R1 SP1 and contains chapters that formerly
appeared in the aPriori User Guide.

▪ aPriori System Administration Guide – This guide contains detailed information
about administering the aPriori solution using the System Admin toolset. It is
designed as a reference for aPriori system administrators.

▪ aPriori VPE Administration Guide – This guide contains detailed information
about using the tools in the virtual production environment (VPE) toolset to
maintain the VPEs in your aPriori deployment. It is designed as a reference for
VPE administrators.

▪ Release Notes – This document highlights the changes made in aPriori since the
previous release. It also contains last minute information about the release.

▪ Installation Guide – This guide contains detailed information about installing
aPriori.

▪ System Requirements – This document provides information on the minimum
and recommended client and server requirements to run aPriori, as well as the
CAD file formats supported by aPriori.

Typographic conventions
The following conventions are used in this guide to convey additional information.

Style Description Example

Code Code style is used for text that is used literally,
appearing exactly as shown. This includes
command names, path and file names, and
system information.

E:\setup.exe

Italic

code
Italic code style is used for names of variables
that you must provide. For example, you need

C:\aPriori\your_file

About This Guide CMWB User Guide

aPriori Version 2019 R2 10

to supply a value for your_file in the path
name example to the right.

GUI GUI style is used to indicate objects in the
aPriori interface.

the Document field

GUI
Action

GUI Action style is used to indicate objects in
the aPriori interface that you click, select, or
otherwise act upon.

Click OK.

Note Notes highlight information, provide supplementary information, offer time-saving
or easier ways to perform the same task, or explain how to prevent errors or data
loss. Be sure to read this information carefully.

Feedback and customer support
We appreciate your comments about this guide. Please contact us with your comments,
questions, and requests for technical support.

Website: http://www.apriori.com/support

Email: support@apriori.com

aPriori Version 2019 R2 11

1 Getting Started with
the Cost Model Work
Bench

This guide tells you how to use aPriori’s Cost Model Work Bench (CMWB) to
customize cost models. It covers how to navigate the resources made available
by the CMWB in order to view and modify cost model data, metadata, and logic.
It covers the syntax and semantics of Cost Scripting Language (CSL), as well as
CSL predefined functions and constants. It also describes how the cost engine,
templates, and GCD hierarchy determine the flow of CSL evaluation. Finally, it
provides examples of common customization tasks.

This chapter includes the following topics:

▪ Starting and Exiting the CMWB

▪ Components of the CMWB Interface

▪ Working with Cost Models

▪ Working with Cost Model Data and Metadata

▪ Working with Cost Model Logic

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 12

Starting and Exiting the CMWB
Follow these steps to start the CMWB:

1 In aPriori Desktop, select VPE Toolset from the Tools menu.

2 In the aPriori VPE Toolset window, click the icon next to Cost Model Workbench.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 13

3 In the Open Cost Model dialog, expand the VPE that contains the cost model you
want to open, select the desired cost model, and click OK.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 14

The CMWB window appears.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 15

To exit the CMWB, select Exit from the File menu.

Components of the CMWB Interface
The instructions in this guide refer to the following major elements of the CMWB
graphical user interface:

▪ Menu bar: provides the standard set of menus: File, Edit, View, Tools, and Help.
Note: Menu items which are useful in both the Cost Model Workbench and the
VPE Administration Toolset (such as Tools > Search CSL) are documented in
the VPE Administration Guide. See that document for more information.

▪ Tool bar: displays tool icons that provide shortcuts for operations such as Save,
Override Object, and Publish Cost Model.

▪ Navigation pane: provides an expandable/collapsible navigation tree with three
top-level nodes:

o Global Cost Model Information: provides access to global data, metadata, and
logic for the current cost model.

o Templates: provides access to the template for each GCD type associated with
the current cost model, as well as to the local data, metadata, and logic
associated with branch nodes of those templates.

o Processes, GCDs & Operations: displays the process-GCD-operation hierarchy,
and provides access to the data, metadata, and logic for each process and
operation associated with the current cost model.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 16

▪ Editing pane: editable display that provides the content of global or node-specific
data, metadata, or logic, including formula tables, metadata tables (such as
machine type tables), and CSL module content.

▪ Debug panel: provides the interface to the CSL debugger, which allows you to
set breakpoints, access in-scope formula and input values, and examine
evaluation contexts. Use the View menu in the menu bar to show and hide the
debug panel.

The following figure shows these elements:

Working with Cost Models
Most of the tasks described in the guide involve customizing a cost model. You
customize a cost model as part of the customization of a VPE. When you customize a
VPE, you generally start by creating, in a staging environment, a copy of another VPE
from which you want the new VPE to inherit. See the VPE Administration Guide for
information on exporting VPEs from a production environment and importing them into a
staging environment, as well as for information on copying VPEs.

Cost model customizations fall into two categories:

▪ Data or metadata customization: includes plant variable and lookup table
customization, machine, material, and tool shop metadata customization, as well
as customization of process setup options. See Working with Cost Model Data
and Metadata.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 17

▪ Logic customization: includes customization of templates that control process
and operation routing, as well as customization of CSL code that controls the
evaluation of taxonomy formulas, routing rules, and machine selection logic. See
Working with Cost Model Logic.

In addition to customization of a cost model’s individual elements (such as metadata
tables and CSL modules), you can also use the CMWB to perform a few operations on
cost models as a whole:

▪ Opening and Closing Cost Models

▪ Importing and Exporting Cost Models

▪ Overriding Cost Model Objects

▪ Saving Cost Model Changes

▪ Publishing and Reverting Cost Models

Opening and Closing Cost Models

When you start the CMWB, you specify a cost model to open. If you want to open a
different cost model, follow these steps:

1 Select Open Cost Model... from the File menu. The Open Cost Model dialog appears.

2 Expand the VPE that contains the cost model you want to open, select the desired
cost model, and click OK.

To close a cost model, select Close Cost Model from the File menu.

Importing and Exporting Cost Models

The CMWB provides import/export functionality in order to support integration of cost
models with source control systems. Contact aPriori Professional Services for
information on performing this type of integration.

Overriding Cost Model Objects

To modify a cost model’s data, metadata, or logic, you sometimes must override a cost
model object such as data table, CSL module, or process setup option. If an object is
inherited, before you modify it, select Override Object from the Edit menu in the menu bar,

or click the override icon, , in the toolbar.

Saving Cost Model Changes

To save changes to an individual cost model object (such as a table, module, or process

setup option), select Save from the File menu in the menu bar, or click in the toolbar.

To save all outstanding changes to all unsaved objects, select SaveAll from the File menu

in the menu bar, or click in the toolbar.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 18

Publishing and Reverting Cost Models

When you make changes to a cost model, such as changes to data tables, PSOs, or
CSL modules, you can save the changes with the Save item on the File menu. This saves
the changes in the CMWB’s local copy. A separate step publishes the changes to the
associated aPriori database.

To publish changes to the database, select Publish Cost Model from the File menu, or click

 in the toolbar.

After you have saved changes locally, but before you have published them, you can roll
back those changes and revert your cost model to its last published state by selecting

select Revert to Database from the File menu, or clicking in the toolbar

Working with Cost Model Data and
Metadata
aPriori costs a part based on the part’s geometry, end-user-specified production
information, and the data and logic specified by a cost model. The CMWB allows you to
manage cost model metadata, such as the tables that define machine types, material
types, and lookup table definitions. This metadata includes attribute names, value types,
default values, and so on.

The CMWB also allows you to customize some types of data, including plant variables
and lookup tables. In many cases, you must use the VPE Manager tool in order to
customize the data whose corresponding metadata is managed by the CMWB. For
example, machine and material metadata is managed by the CMWB, but you must use
the VPE manager to manage the data for individual machines and materials.

The next chapter, Working with Cost Model Data and Metadata covers data and
metadata customization. It includes the following topics:

▪ Navigation: describes how to navigate to global data and metadata, as well as
how to navigate to process-specific and operation-specific data and metadata.
This topic also covers how to navigate to data and metadata associated with
branch nodes. See

▪ Navigating to Global Dataand Navigating to the Data for a Process, Operation or
Branch Node.

▪ Plant variables: covers how to view and modify plant variables (also known as
cost model variables), as well as how to create and delete plant variables. This
section also describes how to access plant variables in CSL. See Working with
Plant Variables.

▪ Lookup tables: describes how to navigate to global and local lookup tables, and
how to modify, add, and remove lookup tables. In addition, this section covers
how to modify, create, and delete lookup table definitions (that is, lookup table
metadata). It also describes how to access lookup table data in CSL. See
Working with Lookup Tables.

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 19

▪ Machine metadata: covers how to view and modify machine types, as well as
how to create and delete machine types. This section also describes how to
access machine data in CSL. See Working with Machine Metadata.

▪ Material and stock metadata: describes how to view and modify material types
and material stock types, as well as how to access material and stock data in
CSL. See Working with Material Metadata and Working with Material Stock
Metadata.

▪ Tool shop and tool material metadata: covers how to view, modify, add, and
delete tool shop types and tool material types, as well as how to associate a tool
shop type with a process and disassociate it from a process. This topic also
describes how to access tool shop and tool material data in CSL. See Working
with Tool Shop Metadata and Working with Tool Material Metadata.

▪ Process setup options: describes how to navigate to and modify the process
setup options for a given process, operation, or branch node. In addition, this
section covers how to add and delete process setup options. It also describes
how to access the current value and mode of a process setup option in CSL. See
Working with Process Setup Options.

▪ GCD types: covers how to control which GCD types aPriori attempts to recognize
for a given process group. See Including and Excluding GCD Types.

▪ Column properties and column groups: describes how to control the appearance
of data in VPE Manager and in aPriori end user tables such as material and
machine tables. See Working with Column Groups and Column Properties.

Examples of working with cost model data can be found in the chapter Common Task
Examples.

Working with Cost Model Logic
You customize cost model logic by working with templates and CSL modules. This type
of customization is covered in the chapter Working with Cost Model Logic. The chapter
covers the following topics:

▪ CSL language and debugger: provides an introduction and overview for the CSL
language, including module types, formulas, rules, values, and expressions. This
section also covers the CSL debugger. See CSL Language Overview. This guide
also includes a Cost Scripting Language Reference.

▪ CSL modules: covers viewing and editing CSL modules, as well as creating and
deleting CSL modules. See Viewing and Editing CSL Modules.

▪ Nodes: describes creating, copying and deleting processes, operations, and
branch nodes. See Creating and Deleting Processes, Operations, and Branch
Nodes.

▪ Module types: describes each module type’s purpose, behavior, and context of
evaluation. These sections also provide sample code from each module type,
together with an explanation of the various CSL constructs employed. The
module types are covered in the following sections:

o Template Pruning

o Material Stock Selection

Getting Started With The Cost Model Work Bench CMWB User Guide

aPriori Version 2019 R2 20

o Process and Operation Optionality

o Process and Operation Feasibility

o Machine Selection

o Tool Selection

o Process and Operation Taxonomy

▪ Templates: covers the purpose of templates and the different kinds of template
nodes. This section also describes the graphical and textual syntax and
semantics of templates, as well as how to view and edit templates. See Working
with Templates.

Each section in this chapter includes one or more examples. Additional examples of
working with cost model logic can be found in the chapter Common Task Examples.

This guide also includes a chapter, Cost Engine Details, which describes the high-level
logic shared by all cost models. It details how templates together with a part’s GCD
hierarchy determine the flow of evaluation of the various types of CSL modules.

aPriori Version 2019 R2 21

2 Working with Cost
Model Data and
Metadata

aPriori costs a part based on the logic provided by the cost engine, templates,
and CSL modules, together with the data provided by the part’s geometry,
production information (such as material selection), and cost model data (such as
machine and material attributes). This chapter covers the management of cost
model data with the CMWB, including management of cost model metadata,
which provides the schema or definition (attribute names, types, default values,
and so on) for cost model data.

This chapter includes the following topics:

▪ Navigating to Global Data

▪ Navigating to the Data for a Process, Operation or Branch Node

▪ Working with Plant Variables

▪ Working with Lookup Tables

▪ Working with Machine Metadata

▪ Working with Material Metadata

▪ Working with Material Stock Metadata

▪ Working with Tool Shop Metadata

▪ Working with Tool Material Metadata

▪ Working with Process Setup Options

▪ Including and Excluding GCD Types

▪ Working with Column Groups and Column Properties

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 22

Navigating to Global Data
A cost model’s data is either global to the cost model or associated with a specific
process, operation, or branch node.

Follow these steps to display information about and links to the global data for the
current cost model:

1 In the CMWB navigation pane, expand the Global Cost Model Information node.

2 Double click or expand one of the following:

o Cost Model Variables: See Working with Plant Variables.

o Globally Available CSL/Lookup Tables. See Working with Lookup Tables.

o Material Type. See Working with Material Metadata.

o Material Stock Types. See Working with Material Stock Metadata.

o Tool Shop Types. See Working with Tool Shop Metadata.

o Tool Material Types. See Working with Tool Material Metadata.

o Lookup Table Definitions. See Viewing and Modifying Lookup Table Definitions.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 23

Navigating to the Data for a Process,
Operation or Branch Node
Data that is not global (see Navigating to Global Data) is associated with a single
template node. (Note that same template node, in this sense of node, can appear in
multiple templates.) There are two general ways to access the data associated with a
given template node: from the template graph below the editing pane, and directly from
the navigation pane.

This section describes the following tasks:

▪ Navigating from the Template Graph to the Data for a Given Node

▪ Navigating from the Navigation Tree to the Data for a Given Process or
Operation

▪ Navigating from the Navigation Tree to the Data for a Given Branch Node

Navigating from the Template Graph to the Data for a Given
Node

Caution: Use this navigation method only to navigate to processes, operations, or
branch nodes that you are certain exist in the navigation pane. Some template nodes
exist only in a template (for organizational purposes) and have no associated data or
logic in the cost model. Using this method on such a node unnecessarily creates an
empty node in the navigation pane and clutters the cost model.

To access, from a template graph, the modules for a given node, follow these steps:

1 In the navigation pane, expand Templates.

2 Double click a GCD type in whose template the desired node occurs. The template
specification appears in the editing pane, and the template graph appears in the
pane below it.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 24

3 In the template graph, right click on the desired node, and select Create/Open Cost
Node.

4 In the editing pane, select one of the following tabs:

o Lookup Tables. See Working with Lookup Tables.

o Process Setup Options. See Working with Process Setup Options.

o Machine Type. See Working with Machine Metadata.

o Tool Shop Type. See Associating a Tool Shop Type with a Process.

Navigating from the Navigation Tree to the Data for a Given
Process or Operation

For a node that represents a process or operation (as opposed to a branch node), you
can access the node’s modules directly from the navigation pane as follows:

1 In the navigation pane, expand Processes, GCDs & Operations.

2 If the node represents a process, double click the process that the node represents.
Otherwise, expand a process that can serve as an ancestor (in the process-
operation hierarchy—see Cost Engine Details) of the desired operation.

3 Expand a GCD type to whose creation the desired operation can contribute.

4 Double click the desired operation under the expanded GCD, if it appears.
Otherwise, expand an operation that can serve as ancestor (in the process/operation

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 25

hierarchy) of the desired operation, and go back to step 3 to continue down the
hierarchy.

5 In the editing pane, select one of the following tabs:

o Lookup Tables. See Working with Lookup Tables.

o Process Setup Options. See Working with Process Setup Options.

o Machine Type. See Working with Machine Metadata.

o Tool Shop Type. See Associating a Tool Shop Type with a Process.

Navigating from the Navigation Tree to the Data for a Given
Branch Node

For branch nodes, you can access a module for a given node directly from the
navigation pane as follows:

1 In the navigation pane, expand Templates.

2 Expand a GCD type in whose template the desired node occurs.

3 Double click the desired node under the expanded GCD.

4 In the editing pane, select one of the following tabs:

o Lookup Tables. See Working with Lookup Tables.

o Process Setup Options. See Working with Process Setup Options.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 26

Working with Plant Variables
There are two kinds of plant variables:

▪ Cost model variables: provide data that is global to a given cost model in a given
VPE

▪ VPE variables: provide data that is global to a given VPE

CSL code can access plant variables through fields of the CSL standard input plant.

Here is an example:

requiredShotSize = plant.shotSizeSafetyFactor * _

 (part.volume * numCavities *

plant.densityPolystyreneForShotSize)/1000000

See CSL Language Overview for more information on CSL.

The CSL field names, such as shotSizeSafetyFactor and

densityPolystyreneForShotSize, are specified in the Variable Name field of the Cost

Model Variables table (see Viewing and Modifying Cost Model Variables).

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 27

This section describes the following tasks:

▪ Viewing and Modifying Cost Model Variables

▪ Creating New Plant Variables

▪ Deleting Plant Variables

Viewing and Modifying Cost Model Variables

To view and modify cost model variables, follow these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information, and double click
Cost Model Variables. The Cost Model Variables table appears in the editing pane.

2 To modify a variable’s value, click in the String Value field and enter the new value.

To modify unit type, double-click in the Unit Type Name field and select a unit type from
the dropdown menu. This may change the Unit field, which you cannot directly
modify.

To modify a variable’s description, click in the Notes field and enter a new value.

3 Select Save from the File menu, or click in the toolbar, to save your changes.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

You cannot modify the Variable Name field.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 28

Viewing and Modifying VPE Variables

To view and modify VPE variables, follow these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information, and double click
Cost Model Variables. The Cost Model Variables table appears in the editing pane.

2 To modify a variable’s value, click in the String Value field and enter the new value.

To modify unit type, double-click in the Unit Type Name field and select a unit type from
the dropdown menu. This may change the Unit field, which you cannot directly
modify.

To modify a variable’s description, click in the Notes field and enter a new value.

3 Select Save from the File menu, or click in the toolbar, to save your changes.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

You cannot modify the Variable Name field.

Creating New Plant Variables

To create a new plant variable, follow these steps:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 29

1 Click in the Variable Name field at the bottom of the plant variables table, under New:,
and enter the name of the new variable.

2 In the String Value field, enter the new variable’s value.

3 For variables with values that have an associated unit, click in the Unit Type Name field
and select a unit type from the dropdown menu. The unit designation appears in the
Unit field.

4 In the Notes field, enter an optional description.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Adding New Plant Variables in Common Task Examplesfor examples.

Deleting Plant Variables

To remove a plant variable, follow these steps:

1 Right click on a row in the plant variables table, and select Remove from the context
menu.

2 Select Save from the File menu, or click in the toolbar, to save your changes.

3 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working with Lookup Tables
Lookup tables provide tabular data. Global lookup tables provide information that applies
to a cost model in general; non-global lookup tables are specific to a process or
operation. A lookup table that is operation-specific is specific to an occurrence of an
operation in the process-GCD-operation hierarchy, and so has an associated path that
names the operation’s ancestor operations and process.

Each lookup table has an associated CSL standard input. CSL modules can access a
lookup table with a query that uses the table’s associated input. Here is an example that
queries the lookup table tubeLaserCutting, which is associated with the Tube Laser

process in the Bar & Tube Fab cost model:

cutRateEntry = select first(cr) from tubeLaserCutting cr _

 where materialFamily == cr.materialCutCodeFamily and _

 part.crossSection.thickness <= cr.materialThickness and _

 cr.power == machine.power _

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 30

 order by cr.materialThickness asc

See CSL Language Overview for more information on CSL.

CSL field names of lookup table entries, such as materialCutCodeFamily and

materialThickness, are specified in the Field Name field of the table’s Lookup Table

Definition (see Viewing and Modifying Lookup Table Definitions). The corresponding
attribute name displayed in the VPE Manager is controlled by the CMWB column
properties dialog. This dialog also controls the formatting, column grouping, and column
properties displayed in the VPE Manager—see Working with Column Groups and
Column Properties.

▪ This section covers the following tasks:

▪ Navigating to Lookup Tables

▪ Viewing and Modifying Lookup Tables

▪ Viewing and Modifying Lookup Table Definitions

▪ Creating Lookup Table Definitions

▪ Deleting Lookup Table Definitions

▪ Adding New Lookup Tables

▪ Removing Lookup Tables

Navigating to Lookup Tables

To navigate to the lookup tables that are global to the current process group, follow
these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information, and double click
Globally Available CSL/Lookup Tables.

2 In the editing pane, select the Lookup Tables tab. The editing pane displays
information about the global lookup tables.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 31

To navigate to the lookup tables for a given process or operation, follow these steps:

1 In the CMWB navigation pane, expand Processes, GCDs & Operations; double-click the
desired process, or navigate to the desired operation and double-click it.

2 In the editing pane, select the Lookup Tables tab. The editing pane displays
information about the specified node’s lookup tables.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 32

To navigate to the lookup tables for a given branch node, follow these steps:

1 In the CMWB navigation pane, expand Templates, navigate to the desired branch
node, and double-click it.

2 In the editing pane, select the Lookup Tables tab. The editing pane displays
information about the specified node’s lookup tables.

For each lookup table, the editing pane displays the following:

▪ Table name

▪ Table meta type, the pathname to the table’s schema definition (see Viewing and
Modifying Lookup Table Definitions).

▪ Folder icon, , for table viewing or editing

▪ X symbol for module deletion

The editing pane also displays a + icon for adding a table. See Adding New Lookup
Tables.

Viewing and Modifying Lookup Tables

To view and modify a lookup table, follow these steps:

1 Navigate to the lookup tables for the desired lookup table’s associated node (see
Navigating to Lookup Tables).

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 33

2 Click next to the name of the table you want to modify. The lookup table appears
in the editing pane.

3 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

4 You can modify field values, and add and remove table rows.

To modify a field value, click in the field, enter the new value, and press return.

To add a table row, click in a field in the (empty) last row of the lookup table, and
enter a value. Enter values in the other fields of the same row.

To remove a row, right-click on it and select Remove.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Viewing and Modifying Lookup Table Definitions

Multiple lookup tables can use the same lookup table definition. A lookup table definition
specifies lookup table metadata. In particular, it specifies how many columns are in any
table that uses the definition; and it specifies information about each column, such as the
column’s name, default value, and units.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 34

Follow these steps to navigate to a lookup table definition:

1 In the CMWB navigation pane, expand Global Cost Model Information; under that,
expand Lookup Table Definitions.

2 Double click the desired lookup table definition. The definition table appears in the
editing pane.

The definition table has one row for each column of any table that uses the definition.
Each row of the definition has the following fields:

▪ Field Name

▪ Description

▪ Default Value Text

▪ Unit Type Name

▪ Unit

▪ Property Type Name

▪ Notes

Follow these steps to modify a lookup table definition:

1 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

2 You can modify field values, and add and remove table rows.

To modify a field value, click in the field, and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.

To add a table row, click in the Field Name field in the (empty) last row of the definition
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new attributes as described in Working with Column Groups and
Column Properties.

To remove a row, right-click on it and select Remove.

3 Select Save from the File menu, or click in the toolbar, to save your changes.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Creating Lookup Table Definitions

When you create a new lookup table, you specify the definition that the new table should
use (which specifies information--such as name and default value--about each column
that the new table will have). If you want to create a table that does not conform to any
existing definition, you must create a new lookup table definition.

Follow these steps to create a new lookup table definition:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 35

1 Right-click any node in the CMWB navigation pane, and select New > Lookup Table
Definition.... The New Lookup Table Definition dialog appears.

2 Enter a name for the new definition in the dialog’s Name field.

3 Optionally, select an existing definition from the dialog’s Copy Definition From field.
This allows you to edit a copy of an existing definition in order to create the new one.

4 Click OK. The new definition appears in the editing pane.

5 Modify the definition table as needed (see Viewing and Modifying Lookup Table
Definitions).

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Adding Lookup Tables in Common Task Examples for an example.

You can also create a new definition in the course of creating a new lookup table. See
Adding New Lookup Tables.

Deleting Lookup Table Definitions

To delete a lookup table definition, follow these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information; under that,
expand Lookup Table Definitions.

2 Right click the desired lookup table definition, and select Delete Object from the
context menu.

Adding New Lookup Tables

Follow these steps to add a new lookup table:

1 Navigate to global cost model data (see Navigating to Global Data) or to the data for
the node with which you want to associate the new lookup table (see Navigating to
the Data for a Process, Operation or Branch Node).

2 Click the Lookup Tables tab in the editing pane.

3 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

4 Click in the editing pane. Information fields for the new lookup table are added to
the editing pane.

5 Enter the name of the new lookup table in the Name field.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 36

6 Click the Meta Type field, and select the definition that the new lookup table should
conform to.

If you need a new definition, scroll to the bottom of the dropdown menu and select
Define New Type...; the Define New Lookup Table Type dialog appears. Follow the
steps in Creating Lookup Table Definitions, beginning with step 2.

7 Select Save from the File menu or click in the toolbar. The information display for
the new table may change location within the editing pane.

8 Click next to the name of the lookup table. An empty table (with the columns
specified by the definition) appears in the editing pane.

9 Add data to the table.

10 Select Save from the File menu, or click in the toolbar, to save your changes.

11 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Adding Lookup Tables in Common Task Examples for an example.

Removing Lookup Tables

To delete a lookup table, follow these steps:

1 Navigate to global cost model data (see Navigating to Global Data) or to the data for
the node with the lookup table that you want to delete (see Navigating to the Data for
a Process, Operation or Branch Node).

2 Click the Lookup Tables tab in the editing pane.

3 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

4 Click next to the lookup table that you want to remove.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working with Machine Metadata
Every process has an associated set of machines. By using the VPE manager, you can
add and remove machines, as well as view and modify the attributes of a process’s
machines (see the VPE Administration Guide). Every process also has an associated
machine type, which specifies machine metadata. It specifies what type of information is

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 37

stored about the associated machines, including the names and default values of
machine attributes. You manage machine metadata with the CMWB.

CSL modules can access machine attributes with the CSL standard input machine. This

input has one field for each machine attribute. Here is an example from the Tube Laser
process in the Bar & Tube Fab process group. It accesses the tubeAxialBarFeedRate

attribute of the current machine:

holeRapidTraverseTime = _

 (averageDistanceBetweenHoles / machine.tubeAxialBarFeedRate)

See CSL Language Overview for more information on CSL.

CSL field names, such as tubeAxialBarFeedRate, are specified in the Field Name field

of the Machine Type table (see Viewing and Modifying Machine Types). The
corresponding attribute name displayed in the VPE Manager and aPriori’s Edit Machine
Selection dialog is controlled by the CMWB column properties dialog. This dialog also
controls the formatting, column grouping, and column properties displayed to the end
user—see Working with Column Groups and Column Properties.

This section covers the following tasks:

▪ Viewing and Modifying Machine Types

▪ Adding Machine Types

▪ Deleting Machine Types

▪ Adding or Modifying a Machine Field for Multiple Processes

Viewing and Modifying Machine Types

To view and modify the machine type for a given process, follow these steps:

1 Expand Processes, GCDs & Operations, and double-click the desired process.

2 In the editing pane, select the Machine Type tab. The editing pane displays the
machine type table.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 38

The machine type table has one row for each column of the current process’s
machine table (that is, the type table has one row for each machine attribute). Each
row of the type table has the following fields:

o Field Name

o Description

o Default Value Text

o Unit Type Name

o Unit

o Property Type Name

o Notes

3 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

4 You can modify field values, and add and remove table rows.

To modify a field value, click in the field and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.
Modifiable fields contain the pencil icon.

To add a table row, click in the Field Name field in the (empty) last row of the type
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new machine attributes as described in Working with Column Groups
and Column Properties.

To remove a row, right-click on it and select Remove.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 39

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Defining and Modifying Machine Types in Common Task Examples for an example.

Adding Machine Types

If a process has no associated machine type, you can add one by following these steps:

1 Expand Processes, GCDs & Operations, and double-click the desired process.

2 In the editing pane, select the Machine Type tab. The editing pane displays the
machine type page with no table.

3 Click . An empty machine type table appears in the editing pane.

4 Select Save from the File menu, or click in the toolbar, to save your changes. The
table is populated with the required fields machine tables:

o averageUtilization

o goodPartYield

o laborTimeStandard

o periodOverheadCoefficient

o setupTime

o workCenterLaborRate

o workCenterOverheadMultiplier

o workCenterOverheadRate

5 Enter values into the fields. As soon as a value is recorded in a row, a new blank row
appears below it. See Viewing and Modifying Machine Types for more information.

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Defining and Modifying Machine Types in Common Task Examplesfor an example.

Deleting Machine Types

Follow these steps to delete a machine table

1 Expand Processes, GCDs & Operations, and double-click the desired process.

2 In the editing pane, select the Machine Type tab. The editing pane displays the
machine type page with no table.

3 Click . The table is removed from the editing pane.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 40

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding or Modifying a Machine Field for Multiple Processes

To add or modify a machine field for multiple processes at once, follow these steps (you
can also perform these steps from the VPE Manager, and a cost model need not be
open):

1 Select Add/Update Machine Field from the Tools menu.

The Add/Update Machine Field dialog appears:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 41

2 Fill in the following dialog fields:

• VPE name: VPE that contains the processes whose machine types you want to
modify. Setting this field populates the dropdown list of choices for the
Process Group field.

• Process Group: process group that contains the processes whose machine
types you want to modify. Setting this field populates the dropdown list of
choices for the Source machine table field.

• Source machine table: processes whose machine types you want to modify.
Click to select the first process; control click to select each subsequent
process. Shift click to mark the end of a range to be selected. Use Ctrl-A to
select all processes. Selected processes that do not define any machine type
(such as User-Defined Process) will be unaffected by the addition or
modification of the field; such processes will continue to lack any associated
machine type.

• Field Name: name of the machine field that you want to add or modify.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 42

• Display Name: optional name of the field as displayed to the end user. If you
don’t supply one, the display name is the result of converting the Field Name to
space-separated, initial-cap words.

• Description: optional description of the field you want to add or modify.

• Property Type Name: CSL data type (such as double, int, or string) used for the
field value.

• Default Value Text: optional default value of the field you want to add or modify.

• Unit Type Name: optional unit type (such as Mass, Length, or Time) used for the
field value. This name must be a case-sensitive, exact match for an aPriori-
supported unit type.

• Notes: optional annotation.

• Parent Group: Optional column group for the new or modified machine field.
See Working with Column Groups and Column Properties. If you don’t supply
a group, the new machine field’s column group is Other.

3 Click OK to override the machine types and make the specified changes. A
notification dialog appears:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 43

4 Click OK in the notification dialog. aPriori opens the modified cost model in the
CMWB, if it’s not already open.

Note: your changes are not saved to your private workspace until you publish the
changes to the public cost model (see step 6, below). That is, unless you publish the
changes, they will not persist across invocations of aPriori.

5 Use the VPE Manager to add or modify values for the new or modified machine
fields.

6 To save your changes to your private workspace and incorporate the changes into
the public cost model, select Publish Cost Model and VPE from the File menu, or click

 in the toolbar.

Working with Material Metadata
Every process group has an associated set of materials. By using the VPE Manager,
you can add and remove materials, as well as view and modify the attributes of a
process group’s materials (see the VPE Administration Guide). Every process group
also has an associated material type, which specifies material metadata. It specifies
what type of information is stored about the process group’s materials, including the
names and default values of material attributes. You manage material metadata with the
CMWB.

CSL modules can access material attributes with the CSL standard input material. This

input has one field for each material attribute. Here is an example from the Injection
Molding process in the Plastic Molding process group. It accesses the canIM_SFM

attribute of the current material:

Rule CompatibleMaterial: material.canIM_SFM

Message CompatibleMaterial: _

 'Failed because you cannot Injection Mold this type of material'

See CSL Language Overview for more information on CSL.

CSL field names, such as canIM_SFM, are specified in the Field Name field of the Material

Type table (see Viewing and Modifying Material Types). The corresponding attribute
name displayed in the VPE Manager and the aPriori Material Selection dialog is controlled
by the CMWB column properties dialog. This dialog also controls the formatting, column

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 44

grouping, and column properties displayed to the end user—see Working with Column
Groups and Column Properties.

Viewing and Modifying Material Types

Follow these steps to view and modify material types:

1 Expand Global Cost Model Information, and double-click Material Type. The editing pane
displays the material type table.

The material type table has one row for each column of the current process group’s
material table (that is, the type table has one row for each material attribute). Each
row of the type table has the following fields:

o Field Name

o Description

o Default Value Text

o Unit Type Name

o Unit

o Property Type Name

o Notes

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 45

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 You can modify field values, and add and remove table rows.

To modify a field value, click in the field and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.
Modifiable fields contain the pencil icon.

To add a table row, click in the Field Name field in the (empty) last row of the type
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new material attributes as described in Working with Column Groups
and Column Properties.

To remove a row, right-click on it and select Remove.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding or Modifying a Material Field for Multiple Process
Groups

To add or modify a material field for multiple process groups at once, follow these steps
(you can also perform these steps from the VPE Manager, and a cost model need not be
open.):

1 Select Add/Update Material Field from the Tools menu.

The Add/Update Machine Field dialog appears:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 46

2 Fill in the following dialog fields:

• Select VPE: VPE that contains the process groups whose material types you
want to modify. Setting this field populates the dropdown list of choices for
the Select Process Group(s) field.

• Select Process Group(s): process groups whose material types you want to
modify. Click to select the first process group; control click to select each
subsequent process group. Shift click to mark the end of a range to be
selected. Use Ctrl-A to select all process groups. Selected process groups
that do not define any material type (such as secondary process groups) will
be unaffected by the addition or modification of the field; such process groups
will continue to lack any associated material type.

• Field Name: name of the material field that you want to add or modify.

• Display Name: optional name of the field as displayed to the end user. If you
don’t supply one, the display name is the result of converting the Field Name to
space-separated, initial-cap words.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 47

• Description: optional description of the field you want to add or modify.

• Default Value Text: optional default value of the field you want to add or modify.

• Unit Type Name: optional unit type (such as Mass, Length, or Time) used for the
field value. This name must be a case-sensitive, exact match for an aPriori-
supported unit type.

• Property Type Name: CSL data type (such as double, int, or string) used for the
field value.

• Notes: optional annotation.

• Parent Group: Optional column group for the new or modified machine field.
See Working with Column Groups and Column Properties. If you don’t supply
a group, the new machine field’s column group is Other.

3 Click OK to override the material types and make the specified changes. A
notification dialog appears:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 48

4 Click OK in the notification dialog. aPriori opens the modified cost models in the
CMWB, if they’re not already open.

Note: your changes are not saved to your private workspace until you publish the
changes to the public cost model (see step 6, below). That is, unless you publish the
changes, they will not persist across invocations of aPriori.

5 Use the VPE Manager to add or modify values for the new or modified material
fields.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working with Material Stock Metadata
Some process groups have an associated set of material stocks. By using the VPE
Manager, you can add and remove material stocks, as well as view and modify the
attributes of a process group’s material stocks (see the VPE Administration Guide). If a
process group has material stocks, it also has an associated set of material stock types,
which specify material stock metadata. Each material stock is an instance of a material
stock type. Multiple material stocks can be instances of the same material stock type.
Each material stock type specifies what kind of information is stored about its instances,
including the names and default values of its instances’ attributes. You manage material
stock metadata with the CMWB.

CSL modules can access material stock attributes with the CSL standard input stock.

This input has one field for each material stock attribute. Here is an example from the
Tube Laser process in the Bar & Tue Fab process group. It accesses the stockForm

attribute of the current material stock:

Rule IncompatibleStockForm1: _

 not (stock.stockForm == 'Round Bar' or stock.stockForm ==

'ROUND_BAR')

Message IncompatibleStockForm1: 'Tube laser cannot cut round solid

bar stock'

See CSL Language Overview for more information on CSL.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 49

CSL field names, such as stockForm, are specified in the Field Name field of the Material

Stock Type tables (see Viewing and Modifying Material Stock Types). The
corresponding attribute name displayed in the VPE Manager and the aPriori Material
Selection dialog is controlled by the CMWB column properties dialog. This dialog also
controls the formatting, column grouping, and column properties displayed to the end
user—see Working with Column Groups and Column Properties.

Viewing and Modifying Material Stock Types

Follow these steps to view and modify material types:

1 Expand Global Cost Model Information, and double-click Material Stock Types. The editing
pane displays the material stock type table.

The material stock type table has one row for each column of the current process
group’s material stock table (that is, the type table has one row for each stock
attribute). Each row of the type table has the following fields:

o Field Name

o Description

o Default Value Text

o Unit Type Name

o Unit

o Property Type Name

o Notes

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 50

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 You can modify field values, and add and remove table rows.

To modify a field value, click in the field and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.
Modifiable fields contain the pencil icon.

To add a table row, click in the Field Name field in the (empty) last row of the type
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new material stock attributes as described in Working with Column
Groups and Column Properties.

To remove a row, right-click on it and select Remove.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working with Tool Shop Metadata
A process that uses tooling, such as molds, cores, and actions, can have an associated
tool shop, which is a set of variables. By using the VPE Manager, you can add tool
shops, and view and modify tool shop variables (see the VPE Administration Guide).
Each tool shop is an instance of a tool shop type, which specifies tool shop metadata. It
specifies what kind of information is stored for the tool shop, including variable names
and default values. You manage tool shop metadata with the CMWB.

CSL modules can access tool shop variables with the CSL standard input toolshop.

This input has one field for each tool shop variable. Here is an example from the
Injection Molding process in the Plastic Molding process group. It accesses the
tryoutRate variable of the current process’s tool shop:

IM_Tryouts = tryoutTime * toolShop.tryoutRate *

standCustomMultiplier

See CSL Language Overview for more information on CSL.

CSL field names, such as tryoutRate, are specified in the Field Name field of the tool

shop type table (see Viewing and Modifying Tool Shop Types). The corresponding
variable name displayed in the VPE Manager is controlled by the CMWB column
properties dialog. This dialog also controls the formatting, column grouping, and column
properties displayed to the end user—see Working with Column Groups and Column
Properties.

This section covers the following tasks:

▪ Viewing and Modifying Tool Shop Types

▪ Adding Tool Shop Types

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 51

▪ Deleting Tool Shop Types

▪ Associating a Tool Shop Type with a Process

▪ Removing a Tool Shop Type from a Process

Viewing and Modifying Tool Shop Types

To view and modify a tool shop type, follow these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information, expand Tool Shop
Types, and double-click the desired tool shop type. The tool shop type table appears
in the editing pane.

The tool shop type table has one row for each tool shop variable. Each row of the
type table has the following fields:

o Field Name

o Description

o Default Value Text

o Unit Type Name

o Unit

o Property Type Name

o Notes

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 52

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 You can modify field values, and add and remove table rows.

To modify a field value, click in the field and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.
Modifiable fields contain the pencil icon.

To add a table row, click in the Field Name field in the (empty) last row of the type
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new tool shop variables as described in Working with Column Groups
and Column Properties.

To remove a row, right-click on it and select Remove.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding Tool Shop Types

To add a new tool shop type to a process group, follow these steps:

1 In the CMWB navigation pane, right click on any node and select New > Tool Shop
Type.... The New Tool Shop Type dialog appears.

2 Enter a name for the new tool shop type; optionally, select a tool shop type to copy
from.

3 Click OK. a blank tool shop type table appears in the editing pane.

4 Enter values into the fields. As soon as a value is recorded in a row, a new blank row
appears below it. See Viewing and Modifying Tool Shop Types for more information.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 53

Deleting Tool Shop Types

If a given tool shop type is not associated with any process and no tool shop is an
instance of it, you can delete the tool shop type by following these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information and then expand
Tool Shop Types.

2 Right click the desired tool shop type, and select Delete Object from the context menu.

Associating a Tool Shop Type with a Process

To add a tool shop to a process that does not have one, you must first associate a tool
shop type with the process. Once a process has an associated too shop type, you can
use VPE Manager to create a tool shop and tool materials for the process.

If a process has no associated tool shop type, you can add one by following these steps:

1 In CMWB navigation pane, expand Processes, GCDs & Operations, and double-click the
desired process.

2 In the editing pane, select the Tool Shop Type tab. The editing pane displays an empty
tool shop type page.

3 Click . The tool shop type appears in the editing pane.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Removing a Tool Shop Type from a Process

To disassociate a tool shop type from a process (see Associating a Tool Shop Type with
a Process) follow these steps:

1 In CMWB navigation pane, expand Processes, GCDs & Operations, and double-click the
desired process.

2 In the editing pane, select the Tool Shop Type tab.

3 Click . The tool shop type is removed from the editing pane.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 54

Working with Tool Material Metadata
A process that has an associated tool shop also has a set of associated tool materials.
By using the VPE Manager, you can add and remove tool materials, and view and
modify tool material attributes (see the VPE Administration Guide). Each of a tool shop’s
associated materials is an instance of the tool shop type’s associated tool material type,
which specifies tool material metadata. It specifies what kind of information is stored for
the tool materials, including material attribute names and default values. You manage
tool material metadata with the CMWB.

CSL modules can access the collection of a process’s associated tool materials with the
toolMaterials field of the CSL standard input toolshop. Here is an example from the

Injection Molding process in the Plastic Molding process group. It accesses the tool
shop’s associated material (there is only one in this case), and assigns it to
moldMaterialStandardMoldBase:

moldMaterialStandardMoldBase = _

 select first(m) from toolShop.toolMaterials m //only one base

material

Each element of the value of toolshop.toolMaterials has one field for each attribute

defined by the tool material type. Here is another example from the Injection Molding
process in the Plastic Molding process group. It accesses the tool material attributes
heightMultiplier, coeffA, coeffB, and coeffC. Note that, as in the example above,

the tool material has been assigned to moldMaterialStandardMoldBase.

heightMultiplier = moldMaterialStandardMoldBase.heightMultiplier

standardMoldBaseCost = _

 ((moldMaterialStandardMoldBase.coeffA * moldAreaInch^2) + _

 (moldMaterialStandardMoldBase.coeffB * moldAreaInch) + _

 (moldMaterialStandardMoldBase.coeffC) + _

 part.boxHeight * heightMultiplier) * _

 standardMoldBaseMaterialMultiplier * regionMultiplier * _

 standardMoldBaseEjectorBoxMultiplier

See CSL Language Overview for more information on CSL.

CSL field names, such as heightMultiplier, are specified in the Field Name field of the

tool material type table (see Viewing and Modifying Tool Material Types). The
corresponding attribute name displayed in the VPE Manager is controlled by the CMWB
column properties dialog. This dialog also controls the formatting, column grouping, and
column properties displayed to the end user—see Working with Column Groups and
Column Properties.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 55

This section covers the following tasks:

▪ Viewing and Modifying Tool Material Types

▪ Adding Tool Material Types

▪ Deleting Tool Material Types

Viewing and Modifying Tool Material Types

To view and modify a tool material type, follow these steps:

1 In the CMWB navigation pane, expand Global Cost Model Information, expand Tool
Material Types, and double-click the desired tool material type. The tool material type
table appears in the editing pane.

The tool material type table has one row for each column of the current process’s
tool material table (that is, the type table has one row for each tool material attribute).
Each row of the type table has the following fields:

o Field Name

o Description

o Default Value Text

o Unit Type Name

o Unit

o Property Type Name

o Notes

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 56

3 You can modify field values, and add and remove table rows.

To modify a field value, click in the field and enter the new value, or (for the Unit Type
Name field) double click in the field and select an item from the dropdown menu.
Modifiable fields contain the pencil icon.

To add a table row, click in the Field Name field in the (empty) last row of the type
table, and enter a name. Enter values in the other fields of the same row. Manage
the display of new tool material attributes as described in Working with Column
Groups and Column Properties.

To remove a row, right-click on it and select Remove.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding Tool Material Types

To add a new tool material type to a process group, follow these steps:

1 In the CMWB navigation pane, right click on any node and select New > Tool Material
Type.... The New Tool Material Type dialog appears.

2 Enter a name for the new tool material type; optionally, select a tool material type to
copy from.

3 Click OK. a blank tool material type table appears in the editing pane.

4 Enter values into the fields. As soon as a value is recorded in a row, a new blank row
appears below it. See Viewing and Modifying Tool Material Types for more
information.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Deleting Tool Material Types

If a given tool material type is not used by any tool shop, you can delete the tool material
type by following these steps:

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 57

1 In the CMWB navigation pane, expand Global Cost Model Information and then expand
Tool Material Types.

2 Right click the desired tool material type, and select Delete Object from the context
menu.

Working with Process Setup Options
Each process, operation, and branch node can have one or more associated setup
options, which allow the end user to input data that is specific to the current part. A CSL
module can access setup option data with the CSL standard input setup, which has one

field for each setup option of the module’s associated node.

The following example accesses nominalWallThickness, which is a setup option for the
Injection Molding process in the Plastic Molding process group:

nominalWallThickness = { _

 setup.nominalWallThickness if setup.nominalWallThickness != null

_

 3 otherwise _

}

A setup option can have multiple input modes—see the description of mode tables in
About Process Setup Options. The CSL standard input setup also has a field that allows

determination of the currently active mode. The field name consists of Mode appended to

the setup option name. Here is an example that accesses the mode for numberOfDrops

(number of hot drops), which is another setup option for the Injection Molding process in
the Plastic Molding process group:

costPerHotDrop = { _

 plant.costPerStandardHotDrop if setup.numberOfDropsMode ==

'userStandard' _

 plant.costPerSVGHotDrop if setup.numberOfDropsMode == 'userSVG' _

 0 otherwise

}

numHotDrops = setup.numberOfDrops * numCavities

numHotDropsPerCavity = setup.numberOfDrops

See CSL Language Overviewfor more information on CSL.

This section covers the following topics:

▪ Navigating to Process Setup Options

▪ About Process Setup Options

▪ Modifying Process Setup Options

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 58

▪ Adding and Deleting Process Setup Options

Navigating to Process Setup Options

Follow these steps to navigate to the process setup options for a given process or
operation:

1 In the CMWB navigation pane, expand Processes, GCDs & Operations; double-click the
desired process, or navigate to the desired operation and double-click it.

2 In the editing pane, select the Process Setup Options tab. The editing pane displays
information about the specified node’s setup options. See About Process Setup
Options.

To navigate to the setup options for a given branch node, follow these steps:

1 In the CMWB navigation pane, expand Templates, navigate to the desired branch
node, and double-click it.

2 In the editing pane, select the Process Setup Options tab. The editing pane displays
information about the specified node’s setup options. See About Process Setup
Options.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 59

About Process Setup Options

For each setup option, the editing pane displays the following:

▪ Arrows, , that allow you to control the order in which the options appear in
aPriori’s end user interface.

▪ Name of the setup option

▪ X symbol for module deletion

▪ Option definition fields:

o Name: name for the field of setup that corresponds to this setup option.

Cannot be modified.

o Display Text: name for this setup option that appears in the end user interface.

o Description: optional description of this setup option.

o Default Mode Name: name of the mode that is active by default—see the
description of mode tables, below.

o Unit Type: type of unit applicable to the option’s values.

o Unit: unit for the option’s value. This is determined by the unit type, and is not
directly editable.

o Decimal Places: precision to which the end user specifies this option’s value.

The Display Text and Description fields can use HTML text markup formatting
syntax. For example, surround text with and to format the display in bold
text.

In addition, each setup option has a mode table, which contains one row for each input
mode presented to the end user. If there are multiple nodes, the end user chooses an
input mode by clicking a radio button. Each row of the mode table contains the following
fields:

▪ Mode Name: string value of the mode field of setup for this mode.

▪ Type: specifies the type of input mechanism presented to the end user, and
specifies how the option value is determined. When you double click in this field,
the following types appear in the dropdown menu:

o CSL: presents no further input mechanism (other than this mode’s radio
button). The option’s value is the value of the CSL expression specified in the
Expression field of the mode table. The expression must not reference CSL
standard inputs.

o FORMULA: presents no further input mechanism (other than this mode’s radio
button). The option’s value is the value of the formula specified in the
Expression field of the mode table. The formula must be CSL output formula.

o USER: presents a data entry field. The value entered by the end user specifies
the value of the setup option.

o LIST: presents a dropdown list. The list’s items are specified by the comma-
separated list (see the figure below) in the Expression field of the mode table.
The item chosen by the end user specifies the string value of the setup
option.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 60

The list’s items can also be specified by a select expression that queries a
lookup table. See Adding a Setup Option—Using List Mode to Access a
Lookup Table for an example.

o I18N LIST: presents a dropdown list. The list’s items are specified by the
comma-separated list of string IDs in the Expression field of the mode table.
The language-specific strings corresponding to the IDs are presented to the
end user. The string item chosen by the end user specifies the string value of
the setup option.

o BOOLEAN: presents a checkbox to the end user. If checked, the option’s value
is true; the option’s value is false otherwise. You must specify a default

value for this mode. If the default is true, the checkbox is checked initially; if

the default is false, the checkbox is initially unchecked.

▪ Display Text: text displayed for this mode.

▪ Expression: see the description of the Type field of the mode table, above.

▪ Min Value: for numeric input, the minimum value that the end user can enter.

▪ Max Value: for numeric input, the maximum value that the end user can enter.

▪ Default Value: value used for this option if the end user does not specify a value.

The editing pane also displays a + icon and Import button, which allow you to add new
setup options—see Adding and Deleting Process Setup Options.

For examples, see Adding New Process Setup Options inCommon Task Examples.

Modifying Process Setup Options

Follow these steps to modify a process setup option:

1 Navigate to the setup options for the desired node (see Navigating to Process Setup
Options).

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 You can now perform the following modifications (see About Process Setup
Options):

Use the arrows, , to change the order in which the options appear in aPriori’s
end user interface.

Modify an option definition field (except Name and Unit) by clicking in the field and
entering a new value, or (for Default Mode Name and Unit Type) double clicking and
selecting an item from the dropdown menu.

Modify a field of the mode table by clicking in the field and entering a new value, or
(for Type) double clicking and selecting an item from the dropdown menu.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 61

Add or remove mode table rows. Add a row by entering data in the last table row.
Remove a row by right clicking the row and selecting Remove.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding and Deleting Process Setup Options

You can either create a new process setup option from scratch or create a new process
setup option by copying an existing setup option.

Follow these steps to create a new process setup option from scratch:

1 Navigate to the setup options for the desired node (see Navigating to Process Setup
Options).

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 Click the green + icon. Option definition fields and an empty mode table appear at
the bottom of the editing pane (see About Process Setup Options).

4 Enter the desired information in the mode table (see About Process Setup Options).
You must add at least one mode.

5 Enter the desired information in the definition fields (see About Process Setup
Options).

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See also Adding New Process Setup Options inCommon Task Examples.

Follow these steps to create a new process setup option by copying an existing setup
option:

1 Navigate to the setup options for the desired node (see Navigating to Process Setup
Options).

2 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

3 Click the Import button. The Copy Process Setup Options dialog appears.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 62

4 In the dialog’s navigation pane, select the process, operation, branch node to copy
from.

5 In the Select Process Fields pane, check the setup options to copy, and click OK.
Copies of the selected setup options appear at the bottom of the CMWB editing pane
(see About Process Setup Options).

6 Modify the setup option as needed. See Modifying Process Setup Options.

7 Select Save from the File menu, or click in the toolbar, to save your changes.

8 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Including and Excluding GCD Types
You can specify which GCD types aPriori attempts to recognize for a given process
group. This can be helpful, for example, if you know that your organization’s parts never

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 63

have a certain type of GCD. By excluding that type, you improve the performance of
GCD extraction, and potentially prevent cases of erroneous extraction.

Follow these steps to enable or disable GCD types in the current cost model:

1 Select Enable GCD Type(s)... from the File menu.

2 Check a GCD type to enable it. Uncheck a GCD type to disable it.

3 Click OK.

Working with Column Groups and
Column Properties
Each of the following kinds of metadata tables has an associated set of column
properties and column groups that you can use control the appearance of data in VPE
Manager and in aPriori end user tables such as material and machine tables:

▪ Machine type: See Working with Machine Metadata.

▪ Material type. See Working with Material Metadata.

▪ Material stock type: Working with Material Stock Metadata

▪ Tool shop type. See Working with Tool Shop Metadata.

▪ Tool material type. See Working with Tool Material Metadata.

▪ Lookup table definition. See Working with Lookup Tables.

Follow these steps to manage column properties and column groups:

1 Navigate to a type table.

2 Click the icon to the left of the table name in the editing pane. The column
properties and column groups page appears in a new tab in the editing pane.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 64

The data table column names appear under Available Fields and Displayed Fields.
These are the displayed names that correspond to the metadata table values of Field
Name. Only those under Displayed Fields are displayed in VPE Manager and aPriori
end user data tables.

To view and modify a column’s properties, select the column name from Available
Fields or Displayed Fields. The following fields appear under Column Properties

o Name: value of Field Name for this column.

o Display Name: displayed name of the column.

o Formatter: controls the format of displayed values.

o Parent Group: column group in which this column appears. In VPE Manager
tables and aPriori end user tables, column groups can be expanded by
clicking the plus sign.

To change which columns are displayed, select a column or group and use the left
and right arrows, and . Note that if you select a group and click the left arrow, all
the columns in that group are moved out of Display Fields. Note also that whenever
you move a column into Display Fields, you must re-specify its Parent Group.

To change the order in which columns appear in VPE Manager and aPriori end user
tables, select a column or group, and use the up and down arrows, and .

Create and delete column groups with and .

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 65

3 Select Save from the File menu, or click in the toolbar, to save your changes.

Working with Node Attributes
Node attributes serve a variety of purposes. Some predefined node attributes directly
affect cost engine behavior (as with, for example, utilizationProcess), and others (such
as contourCuttingProcess) merely provide a label or data item that is available to CSL
modules via predefined functions such as has Attribute and getAttributeValue--

see Node Attribute Functions. You can configure your cost models to make customized
use of either kind of predefined node attribute. You can also define new node attributes
to associate a label or a data item with a process, operation, or branch node.

More information is provided in the following sections:

▪ Navigating to Node Attributes

▪ Adding, Removing, and Modifying Node Attributes

▪ Predefined Node Attributes

Navigating to Node Attributes

Follow these steps to navigate to the node attributes for a given process or operation:

1 In the CMWB navigation pane, expand Processes, GCDs & Operations; double-click the
desired process, or navigate to the desired operation and double-click it.

2 In the editing pane, select the Node Attributes tab (if it isn’t already selected). The
editing pane displays a table of the specified node’s attributes.

To navigate to the attributes for a given branch node, follow these steps:

1 In the CMWB navigation pane, expand Templates, navigate to the desired branch
node, and double-click it.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 66

2 In the editing pane, select the Node Attributes tab (if it isn’t already selected). The
editing pane displays a table of the specified node’s attributes.

Adding, Removing, and Modifying Node Attributes

Follow these steps to modify, add, or remove a node attribute:

1 Select Override Object from the CMWB Edit menu, or click the override icon, , in
the toolbar.

2 To modify an attribute, double click the Value field, and enter a value.

To add an attribute double click the empty Name field at the bottom of the attribute
table, and either enter the name of the new attribute or click the down arrow and
select an attribute

To remove an attirbute, right click it and select Remove.

3 Select Save from the File menu, or click in the toolbar, to save your changes.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Predefined Node Attributes

The node attributes listed below are used by the starting point cost models.

2SetupMilling

This attribute is used by the Machining cost model to indicate that the selected node
should count as two machining operations with independent setup directions, for
example, Side Milling/Side Milling or Side Milling/Facing.

aggregationOperation

The Manufacturing Process tree in aPriori Desktop displays the children of a given
operation if and only if the given operation has the node attribute aggregationOperation.

For example, in the starting point Machining cost model, the Surface Finishing operation
for a Ring GCD has a child operation for each child surface of the ring (such as Facing
for a planar face that is part of the ring). Surface Finishing has the aggregationOperation
attribute, so its child operations (such as Facing on a child planar face) are included in
the Manufacturing Process tree.

The attribute only needs to be present on the operation’s node—it does not need to have
a value.

allowNumOccurrencesOverride

[[Define this attribute and set it to false to hide the Number of Occurrences context menu
item.]]

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 67

assignOpsWithActivePrimaryAxesFirst

A process’s child operations are considered for assignment in pass 1 if and only if the
process has the value true for the node attribute assignOpsWithActivePrimaryAxesFirst.

For information on operation-assignment passes, see Operation Assignment in this
Guide and Operation Assignment for Machining in the Machining chapter of the aPriori
User Guide.

checkForRollingInRouting

Starting point cost models use this attribute to indicate a roll bending process. In the
Bar&Tube Fab cost model, the rolling processes (3, 4, and 5 Roll Bending) each have
this attribute. This is used by various processes for feasibility checks and machine
selection.

For example, the process Sheet Laser Cut cannot be performed after roll bending (it can
only be performed on un-rolled sheet stock). The feasibility module for Sheet Laser Cut
contains the following check:

Rule IncompatibleTubeStock: _

 not(isNodePrecededBy(op, 'checkForRollingInRouting')) and _

 not (stock.stockForm == 'Round Tube' or stock.stockForm ==

'ROUND_TUBE')

Message IncompatibleTubeStock: _

 'Laser Cut is not a typical process for round tube'

Another module that uses this attribute is machine selection for the Tube Laser process.
It performs a check on either part diameter (if the stock is round or rolled) or part height
(otherwise):

Rule MaxStockDiameterCheck: m.maxStockDiameter >= stockSize

stockSize = _

 { part.crossSection.outsideDiameter if _

 (stock.stockForm == 'ROUND_BAR' or stock.stockForm ==

'ROUND_TUBE' or _

 stock.stockForm == 'Round Bar' or stock.stockForm == 'Round Tube'

or _

 hasNodeInTree(op,'checkForRollingInRouting'))

 (max(part.crossSection.height,part.crossSection.width))

otherwise }

The attribute only needs to be present on the operation’s node—it does not need to have
a value.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 68

contourCuttingProcess

The starting point Sheet Metal cost models sometimes use this attribute as an
alternative to the predefined CSL function simpleName. The value of the attribute is the
process name. Here is an example:

maxThicknessCutRate = {

maxPlasmaPunchThicknessCuttingRate if _

 getAttributeValue(op, 'contourCuttingProcess') == 'PlasmaPunch'

or _

 getAttributeValue(op, 'contourCuttingProcess') == 'LaserPunch' _

maxWaterjetThicknessCuttingRate if _

 getAttributeValue(op, 'contourCuttingProcess') == 'WaterjetCut' _

maxThicknessCuttingRate otherwise }

coring

This attribute is defined on nodes for RingedHole coremaking in the Casting cost model.

costModeClass

This node attribute is used by the Plastic Molding starting point cost model to specify
that the Java class com.fbc.businessmodel.costing.CavityCostModeIM should be used to
optimize the number of mold cavities when the user selects optimize mode for the PSO
numberOfCavities.

For any cost model, aPriori uses this class to calculate the number of cavities if both the
following hold:

▪ A branch node of the current process routing defines this attribute and sets its
value to com.fbc.businessmodel.costing.CavityCostModeIM.

▪ Some process in the current routing defines a PSO numberOfCavities and the user
has selected the mode optimize.

In this case, aPriori considers each row of the global lookup table layoutNumCav. It
performs costing using the cavity layout specified by each table row in turn, setting the
PSO (setup.numberOfCavities) to the number of cavities specified by the layout. aPriori
treats each such costing as if it were for a distinct process-level routing, and selects the
one with the lowest cost.

If you create a custom cost model with this attribute, note the following:

▪ The attribute must be defined on a branch node of the Component template.

▪ During consideration of each row of the lookup table, the PSO mode is set to user
(this is visible from the debugger at a break point).

▪ aPriori sets optimizeCostNumCavities to the optimal number of cavities. For the
PSO numberOfCavities, you should define optimize mode with type FORMULA and
formula optimizeCostNumCavities, so that the Process Options Editor UI reports the
optimal number of cavities.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 69

costPerimetersFirst

If this attribute is defined on a node and set to true, the cost engine evaluates the
assignment of Perimeter GCDs in Pass 1 before any other GCDs are costed.

Starting point cost models use this to disable Machining operations on Planar Face and
Curved Wall GCDs when they lie on a Perimeter GCD that has been assigned to
Waterjet Cutting. This is governed by the status of a perRouting cache set in
ofrPerimeterWaterjetCutting.csl, which must be evaluated before any other Machining
operations are assigned in Pass 1.

disableRingedHoleGeneration

If this attribute is defined on a node in a Machining routing, RingedHoles are not created.

displayOperationCategories

This attribute associates a cycle time subtotal class with a node. The cycle times for all
nodes with a given class are aggregated together to form a displayed subtotal of total
cycle time.

displayInSPDialog
A process node is available in the Cost Guide as a Secondary Process only if this
attribute is defined and set to true for the node.

finishGrinding

This attribute is used by the Machining cost model to identify node that is either Finish
Grinding, Net Shape Machining, ASSY Wall Finishing, Finish Grinding, Finishing, or
Hole Grinding. It is used for finish machining rules.

generateRingedHoles

If this attribute is defined on a top-level branch node of the Component template and is
set to true, geometry extraction creates RingedHole GCDs when appropriate. If the
attribute is set to false, extraction does not create RingedHole GCDs.

generatorName

Some cost models use this attribute to specify a Java class that the cost engine uses to
generate instances of a special operation, such as Setup (for Machining) or Die Station
(for Progressive Die). See Working with Zero-or-More Nodes for more information.

hasPiercing

Not currently used.

hasPiloting

Not currently used.

hasPilotingOp

Not currently used.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 70

hasSetupAxisKey

The Machining cost model defines this attribute on nodes that support setup axes and
setup axis keys.

ignoreUpperGtolBound

This node attribute has been deprecated.

inFoundryProcess

Starting point Casting cost models use this attribute to identify processes for which
scrapped parts can be re-melted and reused instead of counting towards scrap parts for
the purposes of calculating Final Yield.

isBarFeedLathe

Starting point cost models use this attribute to identify bar eed lathe processes in
Machining:

▪ 2 Axis Bar Feed Lathe with Sub Spindle

▪ 3 Axis Bar Feed Lathe with Sub Spindle

This attribute is used interchangeably with requiresSingleFaceStockTrim.

Routings using a bar feed lathe should always choose a parting operation for face rings
that are children of stock trim gcds.

Here is some sample CSL that uses this attribute:

Rule BarFeedLatheOnly: not(isTrue(isBarFeedLatheOnly))

Message BarFeedLatheOnly: 'Roughing/Finishing is not applicable for

face rings when the routing includes a bar feed lathe process'

isBarFeedLatheOnly = { _

 true if hasNodeInTreeWithTrueValue(op, 'isBarFeedLathe')_

 and gcd.approachFromName == 'FACE_B'_

 and gcd.parentArtifact.artifactTypeName == 'StockTrim'

 false otherwise}

isGreenSand

The Casting cost model defines this attribute on a node for a process that creates the
green sand mold in Sand Casting.

isPerimeterCut

The Machining cost model defines this attribute on the branch node Perimeter Cutting.
The cost model uses this to determine whether a Perimeter Cutting process is in the
current routing.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 71

isPerimeterStampingProcess

The Sheet Metal cost model defines this attribute on process nodes that can perform
perimeter stamping (such as Progressive Die, Transfer Die, Stage Tooling, Tandem Die,
and Turret Press). It is used to determine whether a Blanking operation is needed.

isPlasmaCutting

The Sheet Metal cost model defines this attribute on the Plasma Cut node. It is used to
determine whether a kerf width needs to be applied when calculating minimum stock
size in Stock Machining.

isWaterjetCutting

The Sheet Metal cost models defines this attribute on the Waterjet Cut node. It is used to
determine whether a kerf width needs to be applied when calculating minimum stock
size in Stock Machining.

isRoughing

Starting point cost models sometimes use this attribute to identify an operation that
performs rough volume removal. If this attribute is set to ‘true’, no tolerance-related
compensation factor is applied to feed rate or cycle time for roughing operations, since
desired tolerance is achieved by a subsequent finishing operation.

See also operationCategory.

Here is an example of its use:

isRoughingOpOnly = {true if getAttributeValue(op, 'isRoughing') ==

'true'_

or getAttributeValue(op, 'operationCategory') == 'Roughing'

false otherwise}

MachiningNode

This attribute is defined on the node named “Machining".

mcdType

Some special cost drivers (MCDs) are recognized during costing subsequent to
geometry extraction. These are shown in the Geometric Cost Drivers pane, but only after
costing. The MCDs recognized for a given routing are governed by the value of this
attribute for the first node (going left to right) that defines the attribute.

Following are the supported attribute values:

▪ Stock Machining

▪ Assembly

▪ Turning

▪ Plastic Molding

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 72

▪ Stage Tooling

Each value is associated with one or more MCDs. Stock machining, for example, is
associated with the MCD Ringed Hole, as is Turning (but see generateRingedHoles).
Plastic Molding is associated with MCDs for slide and lifter bundles.

operationCategory

Starting point cost models use this attribute to identify operations in three categories:

▪ Roughing

▪ Finishing

▪ Holemaking

The attribute is used to aggregate the operation types for display in custom process
outputs in Machining. Here is an example of its use:

ba_totalRoughingOperations3 = _

 select sum(op.formulaResults.cycleTime) from allSetupOps op where

_

 op.formulaResults.cycleTime != null _

 and getAttributeValue(op, 'operationCategory') == 'Roughing'

This attribute is also sometimes used to ensure that no tolerance-related compensation
factor is applied to feed rate or cycle time for roughing operations, since desired
tolerance is achieved by a subsequent finishing operation. See also isRoughing.

otherSecondaryProcesses

The cost model for Other Secondary Processes defines this attribute on the Packaging
node. It is used to determine whether Other Secondary Processes is included in the
UGC Sheet Metal routing. If it is in the routing, Part Length, Part Width, and Part Height
are required user inputs.

PartiallyObstructedFaceMilling

The Machining cost model allows an obstructed setup to be used for an operation whose
node defines this attribute.

perimeterCutting

Used to determine the appropriate feed rate for perimeter cutting processes (such as
Plasma Cut and Waterjet Cut).

Plasma Cutting

The Sheet Metal cost model defines this attribute on the on the Plasma Cutting node of
the Perimeter GCD in the Plasma Cut process. This is used by Stock Machining to
determine whether the plasma cutting process is in the current routing.

PreviouslyCountersunk

Cost models define this attribute on nodes that are able to perform countersinking
without any additional machining operations.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 73

PreviouslyThreaded

Cost models define this attribute on nodes that are able to perform threading without any
additional machining operations.

primaryGtolOp

Cost models define this attribute on default processes and default operations for creating
finished holes or surfaces.

primaryHolemakingOp

Cost models use this attribute to help determine whether a hole finishing operation (such
as reaming or boring) is required for a given GCD. This attribute is defined on each
primary (that is, non-finishing) holemaking operation in Bar&Tube, Casting, Forging,
Machining, Powder Metal, and Sheet Metal.

When aPirori considers whether to include a given hole finishing operation in the current
operation sequence, it checks each upstream operation with this attribute, to see if one
is capable of achieving the required tolerance for the current GCD. If one can, the
finishing operation is not included.

When aPriori calculates cycle time for a primary holemaking operation, if a finishing
operation is included in the operation sequence for the current GCD, no tolerance-
related compensation is applied, since the extra time to achieve the required tolerance is
incurred by the finishing operation. If there is no finishing operation, tolerance-related
compensation is applied to the calculation of cycle time for the primary holemaking
operation.

requiresRotationalAxes

Starting point Machining cost models use this attribute to identify some processes that
use rotational setup axes (4 and 5-Axis Mill).

requiresSingleFaceStockTrim

The starting point Machining cost models define this attribute on the following processes:

▪ 2 Axis Bar Feed Lathe with Sub Spindle

▪ 3 Axis Bar Feed Lathe with Sub Spindle

When this attribute is defined for a node, a custom stockTrim cost driver is created with
only two rings: one FACE ring and one OD ring. For the part in the figure below, aPriori
generates either Ring:1 or Ring:2 (but not both) along with Ring:3.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 74

The attribute is also used in Stock Machining to determine material stock length. Face
stock length allowance only needs to be accounted for on one face instead of two:

minStockLength = {part.minStockLength _

 + faceStockLengthAllowance if isBarFeedLatheInRouting _

 part.minStockLength + 2 * faceStockLengthAllowance otherwise}

defaultStockLengthAllowance = { partingRingWidth if

isBarFeedLatheInRouting

 defaultStockAllowance otherwise }

isBarFeedLatheInRouting = _

 hasNodeInTreeWithTrueValue(op, 'requiresSingleFaceStockTrim')

runFourthCostingPass

Process or branch nodes that define this attribute and set its value to true are evaluated

in the fourth operation-assignment pass. For information on operation-assignment
passes, see Operation Assignment in this Guide and Operation Assignment for
Machining in the Machining chapter of the aPriori User Guide.

selectMachineAfterOpAssignment

For a process node that defines this attribute and sets it to a non-null value, the cost
engine evaluates the machine selection module during the yield pass (prior to the first
evaluation of the process taxonomy module, but after operation assignment). In this
case, childOps and allOps are in scope within the machine selection CSL, so that machine
selection can take into account which operations (or in the case of Progressive Die, for
example, how many die stations) are assigned.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 75

SimpleHoleFinishing

The Machining cost model defines this attribute on the node called "Finish Machining".

sortGcdsByFinishArea

This attribute affects operation assignment for a process node or branch node that
defines this attribute and sets its value to true. For such a node, operation assignment

in passes 3 and 4 considers surfaces in order of descending size of the property
areaFinished.

For information on operation-assignment passes, see Operation Assignment in this
Guide and Operation Assignment for Machining in the Machining chapter of the aPriori
User Guide.

stockPrep

Stock Machining and Machining starting point cost models use the presence or absence
of this attribute to determine if the current routing should include a separate or an
integrated Stock Prep process.

 Here is an example of its use:

Rule CreateSeparateStockPrepProcess: _

not(isTrue(plant.createSeparateStockPrepProcess)) and _

not(hasStockPrepNodeIncluded)

Message CreateSeparateStockPrepProcess: _

'plant.createSeparateStockPrepProcess set to create separate stock

prep processes or stock prep process manually selected'

stockPrepNode = getNodeInTree(op, 'stockPrep')

hasStockPrepNodeIncluded = { true if (stockPrepNode!=null and _

stockPrepNode.inclusionStatus==InclusionStatus.USER_INCLUDE)

false otherwise }

supportsStripNesting

Starting point Sheet Metal cost models define this attribute and set it to true for

processes that support strip nesting. This attribute affects whether strip nesting occurs
only if the current utilization mode is True-Part Shape Nesting. Other utilization modes
are unaffected by the value of this attribute.

supportsTruePartNesting

Starting point Sheet Metal cost models define this attribute and set it to true for

processes that support true part-shape nesting. Setting this attribute to false for such a

process has the following effects on routings that include that process:

▪ The material utilization mode defaults to rectangular nesting.

▪ The true part-shape nesting option is omitted from the Material Utilization section
of the Material Selection dialog.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 76

threading

Cost models define this attribute on the node called "threading".

toolMaterialKey

In the Casting starting point cost model, the following processes set this attribute to
either moldingMaterial or patternMatieral:

▪ Die Casting

▪ Horizontal Automatic

▪ Manual Floor Moldmaking

▪ Manual Std Moldmaking

▪ Vertical Automatic

useAdvancedUtilization

Setting this attribute to true causes the cost engine to use special internal procedures to

evaluate the formulas utilization and numPartsPerSheet. Any CSL for these formulas is
ignored.

Sheet Metal starting point cost models use this attribute for processes that support
special non-CSL part-nesting analysis (which includes true part-shape nesting as well as
other nesting modes). If the attribute is not defined, or is set to false, the CSL is used to
evaluate these formulas.

In some nesting modes, the UI shows a nesting diagram for processes that set this
attribute to true.

userNamedProcess

Every process group includes a process, User-Defined Process, which defines this
attribute. When a new process group is created, such a process is added automatically.

useSheetStock

The Bar&Tube Fab starting point cost models set this attribute to true to designate a

utilization node (see utilizationProcess below) whose stock should be selected from sheet
stock (rather than bar & tube stock). For the utilization node of roll bending routings, the
cost model defines this attribute and sets it to true. This is used internally by aPriori to

guide stock selection. All stock sizes are determined to be virtual stock. Custom cut
mode is not valid for sheet stock.

utilizationProcess

This attribute is used to designate a stock selector and materials utilization nodes. In a
given routing, aPriori evaluates the material stock selection module for (and only for) the
designated stock selector node. In addition, aPriori evaluates utilization for (and only for)
the designated utilization node of a given routing.

The simplest way for a routing to designate the stock selector node is by the presence of
the node attribute utilizationProcess, where the attribute has no value. If there is more
than one node with this attribute (and they are all valueless), the cost engine treats the
right-most active one as the stock selector node.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 77

A routing can also designate the stock selector node by specifying the node’s name as
the value of utilizationProcess for some other node in the routing. If there is more than one
node with a value for this attribute, the left-most one specifies the name of the stock
selector node.

For example, for the sheet metal process group, if a routing includes the branch node
Prog Die, which has a node attribute utilizationProcess whose value is Progressive

Die, the cost engine evaluates the stock selection module associated with Progressive

Die (assuming no other node has a value for utilizationProcess).

If the stock selection module establishes a collection of stocks as the value for the CSL
output validMaterialStocks, the cost engine considers each stock in the collection.

If the stock selection module does not establish a non-null value for the CSL output
validMaterialStocks, the cost engine considers only one, virtual stock, specified as

follows:

▪ For the Machining process group, virtual stock dimensions are determined by the
values of other CSL outputs for the stock selection module, the dimensions of the
current part, and plant variables, as follows:

o Length:

- CSL output virtualStockLength, if non-null.

- Otherwise, the larger of the current part’s minStockLength and the value of

the plant variable standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the current part’s minStockLength and 20 feet.

o Width:

- CSL output virtualStockWidth, if non-null.

- Otherwise, the width of the current part’s cross-section.

o Height:

- CSL output virtualStockHeight, if non-null.

- Otherwise, the height of the current part’s cross-section.

o Inside diameter:

- CSL output virtualStockInsideDiameter, if non-null.

- Otherwise, the inside diameter of the current part’s cross-section.

o Outside diameter:

- CSL output virtualStockOutsideDiameter, if non-null.

- Otherwise, the outside diameter of the current part’s cross-section.

o Thickness:

- CSL output virtualStockThickness, if non-null.

- Otherwise, the thickness of the current part’s cross-section.

▪ For the Sheet Metal process group, virtual stock dimensions are determined by
the values of other CSL outputs for the stock selection module, the dimensions of
the current part, and plant variables, as follows:

o Length:

- The larger of the blank’s length and the CSL output virtualStockLength, if

non-null.

Working With Cost Modelk Data and Metadata CMWB User Guide

aPriori Version 2019 R2 78

- Otherwise, the larger of the blank’s length and the value of the plant variable
standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the blank’s length and 8 feet.

o Width:

- The larger of the blank’s width and the CSL output virtualStockWidth, if

non-null.

- Otherwise, the larger of the blank’s width and the value of the plant variable
standardStockWidth, if the plant variable is defined.

- Otherwise, the larger of the blank’s width and 4 feet.

Waterjet Cutting

The Sheet Metal cost model defines this attribute on the Waterjet Cutting node of the
Perimeter GCD in the Waterjet Cut process. This is used by Stock Machining to
determine whether the waterjet cutting process is in the current routing.

aPriori Version 2019 R2 79

3 Working with Cost
Model Logic

All cost models have the same high-level logic, which defines both the flow and
effects of module evaluation (see Cost Engine Details). The detailed logic of a
cost model is specified by routing templates together with the CSL modules
associated with the templates’ nodes, as well as by global CSL modules. The
code in a CSL module specifies the rules and formulas that make up a particular
portion of a cost model, such as the portion that computes a cost taxonomy for a
particular process. This chapter describes how experienced users can employ
CSL and routing templates in order to implement and customize the details of
cost model logic.

This chapter covers the following topics:

▪ CSL Language Overview

▪ Viewing and Editing CSL Modules

▪ Creating and Deleting Processes, Operations

▪ Template Pruning

▪ Material Stock Selection

▪ Process and Operation Optionality

▪ Process and Operation Feasibility

▪ Machine Selection

▪ Tool Selection

▪ Process and Operation Taxonomy

▪ Working with Templates

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 80

CSL Language Overview
When the cost engine evaluates a CSL module, it either calculates values for the
module’s outputs, such as cycleTime and laborCost, or it returns a boolean value,

true or false. Output values become available to other CSL modules during the costing

process, as well as to the aPriori GUI when costing is complete. Returned boolean
values help guide the choice of process routings and operation sequences.

CSL modules can be divided into three categories:

▪ Taxonomy modules calculate those outputs, such as cycleTime and laborCost,

that are specified by the module’s associated formula table in the CMWB (see
Navigating from the Template Graph to the Data for a Given Node). Taxonomy
modules include the following module types:

o Process taxonomy

o Operation taxonomy

▪ Selection modules establish values for special output identifiers associated with
their module types, for example, machine for machine selection modules and

tool for tool selection modules. Other modules can subsequently use these

identifiers to access the established values. Selection modules include the
following module types:

o Material stock selection

o Machine selection

o Tool selection

▪ Modules that return a boolean value, such as feasibility modules, consist
primarily of rules. They return true if all the rules succeed; they return false if

any rule fails. Modules that return a boolean value include, among others, the
following module types:

o Process feasibility

o Operation feasibility

o Template pruning

o Process optionality

o Operation optionality

In addition to outputs, CSL modules also have a number of standard inputs, such as
part, material, machine, plant, and setup, which allow a module’s code to access

VPE and cost model data, such as plant variables, current setup options, and attributes
of the current part, machine, and material, among other values. See Inputs in Cost
Scripting Language Reference for more information on standard inputs.

This language overview includes the following sections:

▪ Formulas

▪ Rules

▪ Imports

▪ Values

▪ Expressions

▪ Line Continuation

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 81

▪ Comments

▪ Using the CSL Debugger

▪ CSL Reference Information

Formulas

The CSL language is centered around formulas and rules. Formulas establish values for
a module’s outputs.

A formula is essentially a named expression. Here is a typical example from aPriori’s
plastic molding starting points:

computedCycleTime = (injectTime + coolTime + ejectTime) /

numCavities

In this formula, injectTime, coolTime, ejectTime, and numCavities (number of mold

cavities) refer to other formulas in the same module. In the course of evaluating a given
formula, the cost engine evaluates the formulas and rules referred to by the given
formula. Here is the formula for coolTime:

coolTime = 0 - _

 (((nominalWallThickness)^2)/(2*constants.pi*thermalDiffusivity) _

 ln((constants.pi/4)(ejectDeflectionTemp - moldTemp)/ _

 (meltingTemp - moldTemp)))

Here, nominalWallThickness is derived from a setup option. constants is a standard

input that provides access to useful constants such as pi. thermalDiffusivity,

ejectDeflectionTemp, moldTemp, and meltingTemp are all derived from attributes of

the current material, with the following formulas:

thermalDiffusivity = material.thermalDiffusivity

moldTemp = material.moldTemp

meltingTemp = material.meltingTemp

ejectDeflectionTemp = material.ejectDeflectionTemp

In these formulas, material is a standard input. It has a field (such as meltingTemp) for

each material attribute (as listed in the Material Composition table of aPriori’s Material
Selection dialog). CSL code accesses fields of an input with the dot notion shown above.

Note that the cost engine generally evaluates only those formulas that must be
evaluated in order to assign values to the module’s outputs (but see Set Blocks in Cost
Scripting Language Reference). So some formulas in a module might never be
evaluated.

In addition to formulas, CSL also supports function definitions, which are essentially
parameterized formulas. Here is an example:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 82

GetLaborCost(laborTime, laborRate) = laborRate * laborTime /

SEC_PER_HR

Function invocation expressions specify actual parameters for the definition’s formal
parameters. CSL includes a number of predefined functions, such as ln, the natural

logarithm function, used above in the coolTime formula. See Predefined Functions in

Cost Scripting Language Referencefor a list of predefined functions.

A formula or function definition must end with a line break. Line breaks in the middle of a
formula or function definition are generally allowed only through the use of a line
continuation, a space followed by an underscore, as shown in the coolTime formula,

above.

Rules

Rules are essentially named or unnamed boolean expressions. When a rule is
evaluated, the expression is evaluated, and the rule returns the result. For a named rule,
the cost engine assigns the result to the name, and, if the result is false, the message
with a matching name is displayed in the aPriori message pane. If a rule fails, and there
is no message with an exactly matching name, a blank message is issued.

Here is an example from the injection molding feasibility module for aPriori’s plastic
molding starting point cost model:

Rule CompatibleMaterial: material.canIM_SFM

Message CompatibleMaterial: _

 'Failed because you cannot Injection Mold this type of material'

This rule uses the standard input material, which has one field for each attribute of the

current material (as listed in the Material Composition table of aPriori’s Material Selection
dialog). The attribute canIM_SFM is set to true for thermoplastics and false for

thermosetting materials. When the rule returns false, the cost engine issues the failure
message.

As with formulas, rules can refer to other rules and formulas, and the cost engine
evaluates the referenced rules or formulas in the course of evaluating the rule that refers
to them.

For modules, such as feasibility modules, that return true or false, the cost engine
evaluates the module’s rules in order (except for rules that are evaluated sooner in order
to evaluate another rule or formula that refers to them). If a rule evaluates to false,
module evaluation terminates and the module returns false. If all the rules in a module
return true, the module returns true.

Each rule and each message must end with a line break.

Advice Rules

An advice rule, like a rule, specifies a boolean expression. Each advice rule has the
following form:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 83

AdviceRule <rule-name> : <boolean-expression>

While a rule specifies a feasibility requirement, an advice rule specifies an inadvisable—
but not fatal—circumstance pertaining to the current process or operation. If the
expression specified by a rule evaluates to false, the current process or operation is
deemed infeasible, a message is issued to the message tree, and evaluation of the
current module ceases. In contrast, if the expression specified by an advice rule
evaluates to true, advice is issued to the Design-to-Cost (DTC) interface, and evaluation
of the current module continues. (See the aPriori Professional User Guide for
information about Design to Cost.)

Each advice rule has an associated Advice construct, which specifies the content of the
advice to be issued to the DTC interface. Here is an example of an advice rule together
with its associated Advice construct:

AdviceRule maxWallThicknessAdviceCheck:_

 safeEval(maxPartThicknessAllowedRelevant, null) != null and _

 (partMaxThickness > maxPartThicknessAllowedRelevant)

Advice maxWallThicknessAdviceCheck: dtcMessage(

 'attributeId', 'Maximum Wall Thickness',

 'messageId', 'Part thickness is out of recommended range.',

 'current', partMaxThickness,

 'suggestedMax', maxPartThicknessAllowedRelevant,

 'unitType', 'Length',

 'custom.panelOutput', 'castingIssue')

This advice rule is a simplified version of an advice rule in the die casting cost model. It
issues advice when the part's maximum thickness exceeds the maximum recommended
thickness for the current material. The content of the issued advice is specified by a call
to the predefined function dtcMessage. The arguments to this function consist of field-
name/field-value pairs, where each field is set to one component of the advice:

▪ attributeId: the first pair of arguments sets the field attributeId to the string 'Maximum
Wall Thickness'. This specifies the menu item to select in order to view the
category of advice that includes the current advice.

▪ messageId: the next pair of arguments sets messageId to the string 'Part thickness is
out of recommended range'. This specifies the message that appears below the
table when the relevant table row is selected.

▪ current: the next argument pair sets the field current to the part's thickness, the
value that violates the advice rule's associated recommendation. This value
appears in the table column labeled Current.

▪ suggestedMax: the next argument pair sets suggestedMax to the maximum
recommended thickness, the value exceeded by the part's actual thickness. This
value appears in the table column labeled Suggested.

▪ unitType: the next argument pair sets unitType to the string 'Length'. This is the type
of units to use when displaying the values of current and suggestedMax. The
display uses the default units for the specified type (millimeters in this case).

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 84

▪ custom.panelOutput: the last pair of arguments sets the field custom.panelOutput to
the string 'castingIssue'. This specifies that the destination of the advice is the
Casting Issues dialog of the DTC interface.

See the following sections for detailed information on advice rules:

▪ Rules

▪ Advice Rules

▪ Advice

▪ dtcMessage in Miscellaneous Functions

Note: in this release, advice rules can issue advice to the DTC interface for Casting—
Die, Casting—Sand, Plastic Molding, and Sheet Metal. Support for other process groups
will be added in future releases.

Imports

Import directives effectively include the text of a specified file in the current CSL file.
They must appear on the very first lines of a module, before rules, formulas, comments,
or blank lines. Imported files are typically library files. See Navigating to Global CSL
Modules. Here is an example:

import libCommonAccounting.csl

Import directives must end with a line break.

The global CSL file constants.csl is automatically imported into all CSL modules.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 85

Values

CSL supports the following types of values

▪ Arithmetic: can be designated by expressions (see below), numeric literals such
as 50 or 21.75, or identifiers such as roughMass or machine.cycleTime.

▪ String: can be designated by expressions (see below), string literals, such as
‘Material Cost’, or identifiers such as op.name.

▪ Boolean: can be designated by expressions (see below), the boolean literals
true and false, or identifiers such as op.isManualOverride.

▪ Object: can be designated by expressions (see below) or identifiers such as
part, gcd, or machine. Each object has one or more named fields which you can

access using dot notation, as in part.volume or part.material. The value of a

field can be any type of CSL-supported value, including a collection or other
object.

▪ Collection: can be designated by expressions (see below) or identifiers such as
childOps or tubLaserCutting. Note that a cost model’s lookup tables are

collections; each collection element is a table row, and each collection-element
field corresponds to a table column. You can retrieve a collection’s elements by
using query or foreach expressions.

Expressions

CSL supports the following kinds of expressions:

▪ Arithmetic

▪ String

▪ Boolean

▪ Conditional

▪ Function Invocation

▪ Query

Advanced users can also use foreach expressions and associative collection access—

see Foreach Expressions inCost Scripting Language Reference.

Arithmetic

Arithmetic expressions can be formed using binary arithmetic operators, such as * and

/. Here are some examples:

(injectTime + coolTime + ejectTime) / numCavities

(material.density * material.costPerKG) / 10^9

runnerVolume / ((numCavities * part.volume) + runnerVolume)

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 86

String

In the message clause of a rule, string expressions can be formed using the string
concatenation operator +. Here is an example:

m.name + ' is not feasible. The mold base horizontal dimension ' +

_'(' + _

 roundMoldBaseX + _

 'mm) is greater than the horizontal distance between the tie

bars (' + _

 maxTieBarDistanceH + 'mm)'

See Example in Machine Selection for this example in context.

Boolean

Boolean expressions can be formed using unary and binary logical operators such as
and and not, as well as binary arithmetic comparison operators such as == and <=. Here

is an example:

(gcd.edgeTypeName == 'ROUND' and not(isFlangedHoleEdge))) or _

 (gcd.edgeTypeName == 'CHAMFER' and

not(previousCounterSunkEdge)

Here gcd is a standard input, and isFlangedHole and previousCounterSunkEdge refer

to boolean-valued formulas.

See Example in Process and Operation Optionality for this example in context.

Conditional

A conditional expression evaluates to one of several alternative values, depending on
the value of the boolean expressions associated with the alternative values. Here are
some examples of formulas that use a conditional expression:

waste = { percentRun - regrindInput if percentRun > regrindInput

 0 otherwise }

partLength = {setup.partX if setup.partX != null part.length

otherwise}

isFlangedHoleEdge = _

 {true if _

 gcd.parentArtifact != null and _

 gcd.parentArtifact.artifactTypeName == 'SimpleHole' and _

 gcd.parentArtifact.isFlanged == true

 false otherwise _

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 87

 }

(See Example in Process and Operation Optionality for this last example in context.)

The entire right-hand-side of each of these forumlas is a conditional expression. The
conditional expression in the first formula designates the value of percentRun -

regrindInput if percentRun is greater than regrindInput; otherwise it designates 0.

CSL supports an alternative, equivalent form for conditional expressions. Here is an
example:

costingMessage = {

 if (safeEval(costingMessage.severity.errorOrWarning,false) ==

false) {

 null

 } elseif (vars.results.currentCostSummary.preferredErrorMessage

== null) {

 null

 } else {

 msg('<html><b style="color:red">', longDescriptionString, '')

 }

}

A conditional expression can have multiple if or else if lines. It designates the value

associated with the first boolean-expression that evaluates to true. If no boolean-

expression evaluates to true, the conditional expression designates the value

associated with the otherwise or else.

When a condition evaluates to true, the conditions that follow it are not evaluated. So the
order of the conditions can affect performance. The first conditions should be those that
are most likely to evaluate to true or that are inexpensive to evaluate.

Function Invocation

A function invocation expression evaluates to the result of substituting the invocation’s
actual parameters for the formal parameters in the corresponding function definition.
Here are some examples of formulas that invoke functions:

laborCost = GetLaborCost(laborTime, laborRate)

laborTime = _

 GetLaborTime_PlasticMolding_InjectionMolding(_

 processTime, _

 cycleTime, _

 numOperators, _

 laborTimeStandard _

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 88

)

The entire right hand side of both these formulas is a function invocation.

Query

A query expression retrieves or aggregates collection elements or values. These
expressions have essentially the same semantics as SQL queries. The most basic kind
of query expression designates a collection that has those elements of the queried
collection that meet a specified condition. Such a query expression has the following
constituents:

▪ Expression that designates the collection to be queried

▪ Variable that is, in effect, bound to each collection element in turn

▪ Boolean expression that specifies the query’s selection criterion. This expression
includes the query variable. The query result includes the elements of the
queried collection that meet the selection criterion.

Here is an example:

select * from part.childArtifacts x where isTurningAxis(x)

This query expression designates a collection that includes those child GCDs of the
current part that are turning axes. It has the following constituents:

▪ part.childArtifacts: designates the collection to be queried.

▪ x: variable that is, in effect, bound to each element of the collection in turn.

▪ isTurningAxis(x): selection condition that determines which collection

elements form the query’s intermediate result. (isTurningAxis, here, is a

function that returns true if and only if the argument, x, is a turning axis.)

Here, * indicates that the query should return a collection consisting of each selected

element in its entirety. Queries can also return a collection of just the values of a
specified field of the selected elements. Here is an example:

select x.name from part.childArtifacts x where isTurningAxis(x)

This query expression designates a collection containing the names of the current part’s
turning axes. For this query, the collection of the current part’s turning axes is the
intermediate result; the final result is the collection of the names of each element of the
intermediate result.

Query expressions can also include functions that return a specified element of the
intermediate results (such as the first or last element) or perform some form of
aggregation of the intermediate results (such as the count, or number of elements of the
intermediate result). here is an example:

select count(x) from part.childArtifacts x where isTurningAxis(x)

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 89

(See Example in Template Pruning for this example in context.)

This query expression designates the number of child GCDs of the current part that are
turning axes. CSL supports the following functions on intermediate results:

▪ first: returns the first element of the intermediate query results.

▪ last: returns the last element of the intermediate query results.

▪ sum: returns the sum of the values in the intermediate query results.

▪ min: returns the smallest value in the intermediate query results.

▪ max: returns the largest value in the intermediate query results.

▪ count: returns the number of elements in the intermediate query results.

▪ distinct: returns only distinct elements, eliminating duplicates; so, for example,

if the intermediate results include 3, 4, 4, 5, 5, 5, 6, 7, the final result will

include only 3, 4, 5, 6, 7.

Here is an example that uses the sum function:

sumOpsCycleTime = select sum(operation.cycleTime) from childOps

operation

(See Example in Process and Operation Taxonomy for this example in context.)

Here, childOps is a CSL standard input whose value is the collection the current

process or operation’s children in the process-operation hierarchy. Each element of the
collection has a field for each output (such as cycleTime) of the element’s associated

CSL modules. The query designates the sum of the cycle times calculated by each child
operation’s taxonomy module.

Finally, queries can specify a field of the collection elements by which to order the
results or intermediate results. The following query specifies that the intermediate results
be ordered by the value of workCenterOverheadRate, from lowest to highest:

select first(m) from machines m _

 where _

 ClampForceCheck and _

 tieBarHCheck and _

 tieBarVCheck and _

 moldHeightCheck and _

 shotSizeCheck _

 order by m.workCenterOverheadRate

(See Example in Machine Selection for this example in context.)

The query designates the machine with the lowest overhead rate (that satisfies the
selection criterion). The selection criterion refers to various rules. Note that the query

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 90

variable (m, in this case) can appear in rules and formulas referenced by the selection

criterion.

For more examples, see Modifying Machine Selection and Adding a Setup Option—
Using List Mode to Access a Lookup Table inCommon Task Examples.

Line Continuation

Formulas, rules, messages, function definitions, and import directives must end with a
line break. Line breaks within these constructs are allowed only through the use of a line
continuation (with one exception—see below). CSL supports Visual-Basic-style line
continuation, a space followed by an underscore, as in the following:

// A space followed by the underscore is line continuation

a_bool = (part.thickness > machine.minThickness) && _

 (part.thickness < machine.maxThickness)

Conditional expressions can contain a line break after a boolean expression that follows
if.

Comments

CSL supports three different forms for comments. A comment that spans lines can be
enclosed between /* and */, while a single line comment can follow either a double-

slash // or a pound sign #.

You can add or remove the // prefix for multiple lines at once, by doing the following:

1 Indicate the lines to comment or uncomment by selecting at least some text from
each line.

2 Select Toggle Comment from the Edit menu, or type Ctrl+K. Alternatively, in some
locales, you can type Ctrl+/ (that is, hold down the Ctrl key and press the forward
slash).

If the first selected line is commented, this uncomments all selected lines. If the first
selected line is not commented, this comments all selected lines.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 91

Searching Within and Across CSL Modules

You can search within an open module by typing control-F to open a search pane below
the editing pane.

The search pane supports both case-sensitive and case-insensitive search, as well as
regular expression search. You can view the search results one at a time with the next
and previous buttons, and ; alternatively use F3 for next and Shift+F3 for previous.
Note that the search pane searches only within the currently-opened CSL module.

You can also the Search CSL tool to search across all the CSL modules in a given VPE
and process group. The search results list the modules in which the target string
appears. Follow these steps (you can also perform these steps from the VPE Manager):

1 Select Search CSL from the Tools menu.

A Search CSL window appears:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 92

Note that you can open multiple Search CSL windows at once. When you select Search
CSL from the Tools menu, a new Search CSL window is opened even if one is open
already.

2 To search the currently-open cost model, leave the top checkbox checked, and fill in
the Search String field with a (case-sensitive) regular expression specifying the target
of the search. Results are displayed and refined as you type.

To explicitly specify the VPE and cost model to search, uncheck the top checkbox,
and fill in the following dialog fields:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 93

• VPE name: VPE to search. Setting this field populates the dropdown list of
choices for the Process Group field.

• Process Group: process group to search.

• Search String: regular expression specifying the target of the search. Results
are displayed and refined as you type.

By default, search is case-insensitive. Use the Case Sensitive checkbox to enable
case sensitive search.

By default, search is literal. That is, by default, a search string character is never
intrepeted as a meta-character, such as a wildcard character. Use the Regex
checkbox to enable regular-expression search. Note that you must use a backslash
to escape regular expression meta-characters that you want to exactly match. For
example, to search for strings that exactly match ‘plant.’, enter the search string,
‘plant\.’. See http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html for
information about regular expressions.

3 Click on a module in the search results to display the module’s contents, with all
occurrences of the target string highlighted in yellow.

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 94

Alternatively, open the result modules in the CMWB editing pane, and search within
them as described at the beginning of this section.

Note that you cannot edit the CSL in the search results pane, and you cannot
double-click a module name in the search results to open the module in the CMWB
editing pane.

Using the CSL Debugger

The CMWB includes a debugger that allows you to suspend the flow of execution of CSL
modules at a specified breakpoint, that is, at the evaluation of a specified formula or rule.
When the flow of evaluation is suspended, the debugger allows you to examine the
following:

▪ Context of evaluation of the formula or rule

▪ Values of all in-scope formulas and rules

▪ Values of all in-scope CSL standard inputs (as well as values of all the inputs’
fields, and so on, recursively)

Following are some tips on using the debugger:

▪ Save your changes before you run the debugger—otherwise you might not be
evaluating the code you expect. The last saved code is always the one
evaluated.

▪ Ensure that the part you have open in aPriori Desktop is using the VPE and
process group you currently have open in the debugger

▪ When you select Show Debug Panel from the View menu, the debug panel may
sometimes be collapsed to a very narrow pane on the right-hand side of the
CMWB—just drag the edge to make it bigger.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 95

▪ Before returning to work with the current part in aPriori, remember to Click the
stop button, .

The debug panel also includes a profiler that allows you to determine the proportion of
costing time spent on the evaluation of each module, formula, and rule.

Displaying the Debugger

The debug pane is located to the right of the editing pane, and is visible by default. To
display it if it is not visible, select Show Debug Panel from the CMWB View menu.

For releases prior to 2018 R1 SP1, you might need to drag the edge of the editing pane
to the left to display the debug pane.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 96

Adding Breakpoints

Add a breakpoint as follows: in the editing pane, right click a formula name or rule name
and select Add Breakpoint from the context menu.

Alternatively, ensure that the debugger is displayed, and follow the steps below. These
steps allow you to add a conditional breakpoint, which stops execution at a specified
location only when a specified condition is met:

1 Click Add Breakpoint to display the Breakpoint Properties window.

If this button is disabled, open the CSL file that contains the formula for which you
want to set the breakpoint.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 97

2 Select the breakpoint type and a formula or rule.

Select Formula to select a CSL formula from the drop-down list. Select Rule to
select a rule from the drop-down list.

3 Select the breakpoint condition.

Select Always halt to stop cost modeling as soon as the formula or rule finishes.
Select Halt only if to specify an additional condition under which costing is
suspended. For example, you might suspend costing only when a certain boundary
condition obtains, for example when gcd.name == ‘SimpleHole:1’.

4 Click OK to close the window and display the breakpoint on the Breakpoints tab of the
debug pane.

To remove a breakpoint, right-click on it in the Breakpoints tab, and select Remove from
the context menu.

Running the Debugger

Click to perform costing until the cost engine evaluates the specified formula or rule.

If the CSL file containing the breakpoint is open, the line containing the formula is
highlighted and displayed.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 98

Click Continue to resume costing until the cost engine reaches the next breakpoint.
Note that a single breakpoint can be hit many times in a single cost event. Consider, for
example, an operation for a given GCD type, such as SimpleHole. Since the operation
may be performed multiple times (once for each GCD of that type), a breakpoint in such
an operation may be hit multiple times.

Click to stop the debugger.

When costing is suspended at a breakpoint, the debugger displays information in the
following tabs:

▪ Breakpoints: current breakpoints and context of evaluation of the formula or rule.
This tab displays the evaluation stack, including the following:

o Other formulas or rules whose evaluation required evaluation of the
breakpoint

o Current process or operation

o Current operation sequence (if any)

o Current material stock (if any)

o Current process routing

o Current GCD

▪ In-scope Formulas: values of all in-scope formulas and rules

▪ Inputs/Formula Results: values of all in-scope CSL standard inputs (as well as
values of all the inputs’ fields, and so on, recursively). Expand nodes of the tree
to see field values. Alternatively, enter a search string in the search field and click
Find:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 99

Check any combination of the checkboxes to indicate the search domain:

o Property: search for occurrences of a string in the Name column of the tree.

o Value: search for occurrences of a string in the Value column of the tree.

o Path: search for occurrences of a string in the full path to an input’s field (the
full path to the length field of the input stock, for example, is stock.length).

You can specify multiple, space-separated search strings; tree nodes are
matched only if they contain all the search strings. To search for a string that
contains spaces (this only applies to field values), enclose the whole string in
double-quotes.

Click on a search result to highlight the result in the tree. Search results are
initially sorted by the level of the tree in which the result occurs (users can re-sort
by clicking a column heading).

The search covers the number of levels of the tree specified in the Depth field.
This is set to 5, initially, but you can decrease the depth to 1, or increase it to 10.
In many cases, the greater the depth at which a result appears, the less relevant
it is likely to be. (System administrators can configure the maximum available
depth by setting the property ide.display.inputs.max.search.depth in
apriori.properties—see the System Administration Guide. Note that search
depths significantly higher than 10 run the risk of long search times and, in some
cases, exhausting the Java heap.)

You can enter a CSL expression in the Dynamic CSL Evaluation pane, below the editing

pane. Click in the evaluation pane (or type Ctrl + Enter) to display the result of
evaluating, in the current context, the expression you entered.

You can also drag an item from the Inputs/Formula Results tree into either an open CSL
module or the Dynamic CSL Evaluation pane to get a full path reference to the item. See
Dragging Items from the Inputs/Formula Results Tree for more information.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 100

Note that you can undo and redo actions performed in the Dynamic CSL Evaluation pane
(in the usual way, by selecting Undo or Redo from Edit menu or by typing Ctrl+Z or Ctrl+Y,
when the focus is on the evaluation pane).

Dragging Items from the Inputs/Formula Results Tree

You can drag an item from the Inputs/Formula Results tree into either an open CSL module
or the Dynamic CSL Evaluation pane to get a full path reference to the item, in the current
debugger context (see Running the Debugger).

If you drag an item into the Evaluation pane or a CSL module, and the path to the item
does not include a collection (that is, if the dragged item has no ancestor in the
Inputs/Formula Results tree that is a collection), the code that appears is appropriate for
use in CSL logic to refer to the dragged item.

However, if the path to the dragged item does include a collection, you must modify the
code that appears in order to render it appropriate for inclusion in a CSL module. You
can modify the code to do any of the following:

▪ Refer to the dragged item.

▪ Refer to a collection of items that are on the same level of the tree as the
dragged item and that have the collection as an ancestor.

▪ Aggregate a collection of values (by taking the sum or maximum, for example)
that include items that are on the same level of the tree as the dragged item and
that have the collection as an ancestor.

See the following sections for more information:

▪ Paths with One Collection

▪ Paths with Two Collections

▪ Paths with More than Two Collections

Paths with One Collection

If the path to the dragged item includes one collection, the Cost Model Workbench
displays the following dialog which lets you choose a code style.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 101

In CSL, collection elements are typically accessed in one of the following ways:

▪ select expression: this is similar to an SQL select statement; it treats the collection
as a table with one row for each element and with columns for properties of the
elements. See Query. You must modify the select expression in order to focus in
on the item or items of interest (see below).

▪ foreach expression: this is a loop that processes each collection element in turn,
and builds up a set of results, or formulates a single result. See Foreach
Expressions. You must modify the foreach expression in order to focus in on the
item or items of interest (see below).

▪ listGet call: a call to listGet returns the collection element at a specified position.
See listGet(list, i).

Important Note: the listGet call is not appropriate for use in a CSL module,
because the collection element in the path is identified by its position in the
collection (the second argument to ListGet), which is often arbitrary and/or
unstable. With select and foreach expressions, in contrast, the collection item or
items of interest are generally identified by their property values; the dragged
item, for example, might be identified as the diameter of the collection element
with the largest diameter—see the examples below.

If you choose either select expression or foreach expression, one or both of the following
sorts of modifications is generally needed:

▪ Use of a where clause (for select) or conditional (for foreach) to narrow down the
selected items, so as to help identify the items of interest.

▪ Use of an aggregation function to further focus in on items of interest, to uniquely
identify an item of interest, or to aggregate values of interest.

See Paths with One Collection: select expresion and Paths with One Collection: foreach
expression, below, for more information.

Paths with One Collection: select expresion

This section contains an example of modifying the code that appears when you drag an
item, so that the code refers to the dragged item. Consider the path to the diameter of
the current part's largest-diameter SimpleHole. This path goes from the part to the
collection of its childArtifacts (child GCDs), to the part's largest-diameter SimpleHole, to
that hole's diameter.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 102

Suppose you drag this diameter item to the Evaluation pane, then choose select expression
from the Select code style dialog. The Evaluation pane is populated with a select
expression that requires changes. If you evaluate the unmodified expression, an
exception results because some of the selected collection elements lack a diameter
property (that is, some child GCDs of the part, such as PlanarFaces, don't have a
diameter property).

The expression requires two changes which effectively single out the collection element
of interest; that is, the collection element in the path to the dragged object:

1 Addition of a where clause: since the element of interest is a SimpleHole, the where
clause must filter the selected objects to include only SimpleHole GCDs. This

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 103

change eliminates the cause of the exception, since all SimpleHole GCDs have a
diameter property. The modified expression evaluates to a collection whose elements
are the diameters of the part's SimpleHoles.

2 Addition of an aggregation function: with the where clause, the select expression
evaluates to a collection of diameters rather than just the largest diameter. You can
single out the largest diameter by using the query-aggregation function max:

Paths with One Collection: foreach expression

If you choose foreach expression instead of select expression from the Select code style
dialog, the Evaluation pane or CSL module is populated with a foreach expression. This
expression may require changes that focus in on, and possibly aggregate, items of
interest. If you evaluate the unmodified expression, an exception may result, as with the
select expression (described above).

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 104

One or both of the following sorts of changes are generally required:

1 Conditional assignment of the iteration variable: the foreach loop must filter the
results to include only the specific objects or values of interest (diameters of
SimpleHoles, in the example).

2 Replacement of the aggregation function: the unmodified foreach expression uses
the foreach-aggregation function getAll. You can further narrow or aggregate the
foreach results by using a different aggregation function. This example singles out
the largest diameter by using the foreach-aggregation function getMax:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 105

Paths with Two Collections

If you drag an item to the Evaluation pane or a CSL module, and the path to the dragged
item includes exactly two collections, the Cost Model Workbench displays the following
dialog:

If you choose foreach wrapping select, the Evaluation pane or CSL module is populated
with a foreach expression whose body contains a select expression. This code requires
changes in order to aggregate or focus in on items of interest.

Suppose, for example, you want to construct a CSL expression that evaluates to the
surface area of the part's largest-surface-area SimpleHole. To start, you might drag to
the Evaluation pane the finishArea (surface area) item of a CurvedWall child of one of the
part's SimpleHoles. (SimpleHoles have no surface area property, so the code we
construct will reference the hole's CurvedWall children.) This path goes from the part to
the collection of its childArtifacts, to the SimpleHole, to the collection of that SimpleHole's
childArtifacts, to the CurvedWall, to the areaFinished of that CurvedWall.

Now suppose that, after dragging the finishArea item, you choose foreach wrapping select
from the Select code style dialog. The Evaluation pane is populated with an initial CSL
expression based on the dragged item. In most cases, evaluating the unmodified
expression will result in an exception due to certain collection elements visited by the
select statement lacking an areaFinished property.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 106

The following changes are required to render this code appropriate for use in a CSL
module:

1 Addition of a where clause: the first collection in the path is that containing the part’s
top-level GCDs. It includes the SimpleHole that appears within path to the dragged
item. From this collection, the path to the dragged item includes a CurvedWall, so we
use a where clause to filter the objects selected from this collection so as to include
only CurvedWall GCDs. This change eliminates the cause of the exception since all
CurvedWall GCDs have an areaFinished property. The modified expression evaluates
to a collection whose elements are collections of areaFinished values. There is one
collection of areaFinished values for each of the part's children that itself has
CurvedWall children. Each sub-collection contains the areaFinished values for the
CurvedWall children.

2 Conditional assignment of the iteration variable: we now have areaFinished values for
CurvedWall GCDs, but some of these may belong to top-level GCDs of types other
than SimpleHole. We stated earlier we were only interested in SimpleHoles, so we
need to filter the collection of top-level GCDs to remove non-SimpleHole types. We
use conditional assignment of the foreach expression’s iteration variable to achieve
this:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 107

3 Addition of a query-aggregation function: with the where clause and foreach
conditional assignment, the expression evaluates to a collection of pairs (since each
SimpleHole has exactly two CurvedWall children). You can obtain the total surface
area for each SimpleHole by introducing the aggregation function sum to the select
expression. In effect, this adds together the two areaFinished values in each pair:

4 Addition of a foreach-aggregation function: with the use of the query-aggregation
function, the expression evaluates to a collection of surface area values. We can
now single out the largest of these values with the foreach-aggregation function
getMax:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 108

If, instead of foreach wrapping select, you choose select from right-most collection, the code
that appears uses a select expression that queries elements from the collection that is
nearest the dragged item, i.e. the right-most collection in the path to the dragged item.
The generated expression includes calls to listGet, which must be replaced in order to
render the code appropriate for use in CSL module.

If you choose listGet, the code that appears is not suitable for inclusion in a CSL module,
but rather is for diagnostic purposes only.

Paths with More than Two Collections

If you drag an item to the Evaluation pane or a CSL module, and the path to the dragged
item includes more than two collections, the Cost Model Workbench displays the
following dialog:

If you choose select from right-most collection, the code that appears uses a select
expression that queries elements from the collection that is nearest the dragged item,
i.e. the right-most collection in the path to the dragged item. The generated expression
includes calls to listGet, which must be replaced in order to render the code appropriate
for use in CSL module.

If you choose listGet, the code that appears is not suitable for inclusion in a CSL module,
but rather is for diagnostic purposes only.

CSL Reference Information

For detailed information on the CSL language, see Cost Scripting Language Reference.
That chapter also covers advanced constructs not discussed here, including set blocks,
foreach expressions, and associative collection access.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 109

Viewing and Editing CSL Modules
For a given process group, each CSL module is either global to the process group or
associated with a particular node of one of the group’s process or operation templates.
Recall that each node represents a process or operation (or else is a branch node—see
Working with).

This section covers the following topics:

▪ Navigating to Global CSL Modules

▪ Navigating to the CSL Modules for a Given Node

▪ Viewing CSL Modules

▪ Editing CSL Modules

▪ Adding CSL Modules

▪ Deleting CSL Modules

Navigating to Global CSL Modules

Follow these steps to display information about and links to the global CSL modules for
the current process group:

1 In the CMWB navigation pane, expand the Global Cost Model Information node.

2 Double click Globally Available CSL/Lookup Tables in the navigation pane.

3 In the editing pane, select the Library CSL tab (for library modules) or the CSL Modules
tab (for non-library modules).

For each global CSL module, the editing pane displays the following:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 110

▪ Module name

▪ Module type name

▪ File path for the module

▪ Table of output formulas

▪ Folder icon for module viewing or editing

▪ X symbol for module deletion

The editing pane also displays a + icon for adding a module. See Adding CSL Modules.

Navigating to the CSL Modules for a Given Node

Besides the global CSL modules (see Navigating to Global CSL Modules), each CSL
module is associated with a single template node. (Note that same template node, in this
sense of node, can appear in multiple templates.) There are two general ways to access
the CSL modules associated with a given template node: directly from the navigation
pane, and from the template graph below the editing pane.

For a node that represents a process or operation (as opposed to a branch node—see
Working with), you can access the node’s modules directly from the navigation pane as
follows:

1 In the navigation pane, expand Processes, GCDs & Operations.

2 If the node represents a process, double click the process that the node represents.
Otherwise, expand a process that can serve as an ancestor (in the process-
operation hierarchy—see Cost Engine Details) of the desired operation.

3 Expand a GCD type to whose creation the desired operation can contribute.

4 Double click the desired operation under the expanded GCD, if it appears.
Otherwise, expand an operation that can serve as ancestor (in the process/operation
hierarchy) of the desired operation, and go back to step 3 to continue down the
hierarchy.

5 In the editing pane, select the CSL Modules tab.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 111

For branch nodes (see Working with), you can access a module for a given node
directly from the navigation pane as follows:

1 In the navigation pane, expand Templates.

2 Expand a GCD type in whose template the desired node occurs.

3 Double click the desired node under the expanded GCD.

4 In the editing pane, select the CSL Modules tab.

To access, from a template graph, the modules for a given node, follow these steps:

Caution: Use this navigation method only to navigate to processes, operations, or
branch nodes that you are certain exist in the navigation pane. Some template nodes
exist only in a template (for organizational purposes) and have no associated data or
logic in the cost model. Using this method on such a node unnecessarily creates an
empty node in the navigation pane and clutters the cost model.

1 In the navigation pane, expand Templates.

2 Double click a GCD type in whose template the desired node occurs. The template
specification appears in the editing pane, and the template graph appears in the
pane below it.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 112

3 In the template graph, right click on the desired node, and select Create/Open Cost
Node.

4 In the editing pane, select the CSL Modules tab.

For each CSL module, the editing pane displays the following:

▪ Module name

▪ Module type name

▪ File path for the module

▪ Table of output formulas

▪ Folder icon for module viewing or editing

▪ X symbol for module deletion

The editing pane also displays a + icon for adding a module. See Adding CSL Modules.

Viewing CSL Modules

To view a CSL module, follow these steps:

1 For a global CSL module, navigate to the global CSL modules (see Navigating to
Global CSL Modules). Be sure to select the Library CSL tab for library modules and
the CSL Modules tab for non-library modules.

For CSL modules associated with a node, navigate to the CSL modules for the
node—see Navigating from the Template Graph to the Data for a Given Node.

2 Click the folder icon for the desired module. The module text appears in the editing
pane.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 113

Editing CSL Modules

To edit a CSL module, follow these steps:

1 For a global CSL module, navigate to the global CSL modules (see Navigating to
Global CSL Modules). Be sure to select the Library CSL tab for library modules and
the CSL Modules tab for non-library modules.

For CSL modules associated with a node, navigate to the CSL modules for the
node— see Navigating from the Template Graph to the Data for a Given Node.

2 Click the folder icon for the desired module. The module text appears in the editing
pane.

3 Select Override Object from the CMWB Edit menu. You can now modify the text. See
also Using Completion, below.

4 To add or remove output formulas, select the tab (at the top of the editing pane) for
the node associated with the module you are editing. In other words, go back is the
screen on which you just clicked the folder icon. Modify the module’s formula table.
To add a formula, use the blank line at the end of the table. To remove a formula,
right click in it and select Remove.

5 Select Save All from the File menu to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE
from the File menu.

Using Completion

The CSL editor supports code completion. Type Ctrl and Space together to pop up a list
of suggested completions for the word you are typing.

The list of suggestions includes the following:

▪ CSL predefined (built-in) functions, such as searchString and asList, whose names
include the sequence of letters that you have typed so far.

▪ CSL templates, such as select and foreach templates, whose names include the
sequence of letters you have typed so far. A CSL template is a canonical

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 114

example of a CSL construct (such as a select expression). It contains
placeholders, which you will replace with expressions of your choice in order to
tailor the example to your needs. Note that you can define your own templates in
order to supplement the built in, system-supplied templates—see Defining CSL
Code Templates.

▪ CSL standard inputs, such as plant and childResults, whose names include the
sequence of letters you have typed so far.

The list begins with suggestions that start with the letters typed so far, arranged
alphabetically. These are followed by suggestions that include, but don’t start with, the
letters typed so far, arranged alphabetically.

Typing Control and Space pops up a list with all suggestions; typing control space
additional times toggles through filtered lists:

▪ System-supplied template suggestions

▪ User-defined template suggestions

▪ Built-in function suggestions

▪ Standard input suggestions

▪ All suggestions

The current category of suggestions is displayed in the lower right:

Click on a suggested function or template to display documentation for it.

Double click a suggestion to insert its associated code into the CSL module at the cursor
location:

▪ Functions: double click a function suggestion to insert a template for a call to the
function. For functions with arguments, you will have to replace the argument-
placeholders with the appropriate expressions.

▪ Templates: double click a template suggestion to insert a template for a formula
or expression. You will have to replace the placeholders with appropriate
expressions.

▪ Inputs: double click an input suggestion to insert it into the code.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 115

You can also use the up/down cursor keys to select an entry (and bring up any
associated documentation), and you can press RETURN/ENTER to insert the selected
entry’s CSL.

The following shows the associated code for the function searchString, and for the
templates select, foreach, and with:

Note that the suggestion list only includes CSL standard inputs when costing is stopped
at a CSL breakpoint. The suggestions include only the inputs that are defined or
available (that is, in scope) at that point in the cost model execution.

Defining CSL Code Templates

Follow these steps to define a CSL code template:

1 Create a file called user-defined-csl-templates.xml. Do one of the following:

• Save the file in the application-data directory of your aPriori installation (for
example, in C:\Users\<user>\AppData\Local\aPriori\18.3).

• Save the file in a directory of your choice that you can continue to use when
you upgrade to new versions of aPirori. Set the property ide.csl.templates.dir in
apriori.properties to the path for this directory (see the System Administration
Guide).

2 Edit the file to include one templates element, and within that, as subelements, one
template element for each template that you want to define. Here is an exmaple:

 <templates>

 <template name="Basic Template" description="first example">
 <documentation><![CDATA[
 Type some documentation here...
]]></documentation>
 <csl>basic.single(line).code.fragment</csl>
 </template>

 <template name="Longer Template" description="another example">
 <documentation><![CDATA[
 Type some documentation here...
]]></documentation>
 <csl><![CDATA[
 foreach (variable1: select x from collection x) getSum(variable2) {

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 116

 variable2 = select x.attribute from variable.collection x
 }
]]></csl>
 </template>

 ...

</templates>

Each template element has the following attributes and subelements:

▪ name: template name

▪ description (optional): short description of the template

▪ documentation (optional): documentation for the template

▪ csl: the template's associated code example

The use of CDATA tags is generally recommended for the documentation and csl
elements, in order to avoid problems arising from the use of XML reserved characters in
the element's contents.

Adding CSL Modules

To add a CSL module, follow these steps:

1 For a global CSL module, navigate to the global CSL modules (see Navigating to
Global CSL Modules). Be sure to select the Library CSL tab for library modules and
the CSL Modules tab for non-library modules.

For CSL modules associated with a node, navigate to the CSL modules for the
node— see Navigating to the Data for a Process, Operation or Branch Node.

2 Select Override Object from the CMWB Edit menu.

3 Click the green plus icon at the top or bottom of the editing pane. Information for a
new module appears in the editing pane

4 For modules other than library modules, select the type of the new module from the
dropdown list for the Type Name field.

For library modules, enter the name of the new module in the File Name field. The
name should start with lib and end with .csl.

5 Enter a line in the formula table for each output formula (if any) of the new module.
Standard taxonomy formulas are added automatically.

6 Select Save from the File menu.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 117

7 Click the folder icon for the new module. The module content appears in the editing
pane. The module is initially empty (except for default formulas that set to 0 certain
high-level values, such as cycleTime and pieceCost).

8 After adding the text of the new module, select Save from the File menu to save your
changes.

9 To incorporate your changes into the cost model, select Publish Cost Model and VPE
from the File menu.

Deleting CSL Modules

To delete a CSL module, follow these steps:

1 For a global CSL module, navigate to the global CSL modules (see Navigating to
Global CSL Modules). Be sure to select the Library CSL tab for library modules and
the CSL Modules tab for non-library modules.

For CSL modules associated with a node, navigate to the CSL modules for the
node— see Navigating from the Template Graph to the Data for a Given Node.

2 Click the folder icon for the desired module. The module text appears in the editing
pane.

3 Select Override Object from the CMWB Edit menu.

4 At the top of the editing pane, select the tab for the node associated with the module
you want to delete. In other words, go back is the screen on which you just clicked
the folder icon.

5 Click the red X icon to delete the file.

6 Select Save from the File menu to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE
from the File menu.

Creating and Deleting Processes,
Operations, and Branch Nodes
This section covers how to create and delete processes, operations, and branch nodes
(see Working with). You can create a new process and operation either from scratch or
by copying the modules associated with an existing process or operation.

This section covers the following topics:

▪ Creating and Copying Processes

▪ Creating and Copying Operations

▪ Creating Branch Nodes

▪ Deleting Processes, Operations, and Branch Nodes

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 118

Creating and Copying Processes

You can create a new process in three different ways:

▪ By creating a copy of another process. The copy includes copies of the source
process’s metadata definitions and CSL modules. With this method, you can also
optionally copy specified operations. See Creating a Process by Copying.

▪ By creating a new process with standard taxonomy and machine selection
modules. These modules contain standard accounting formulas, and can serve
as a starting point for development of the new process’s CSL modules. With this
method, you can also optionally copy a specified machine type. See Creating a
Process with Standard Taxonomy and Machine Selection Modules.

▪ By creating a new process entirely from scratch. See Creating a Process from
Scratch.

Creating a Process by Copying

To create a new process by copying the CSL modules associated with an existing
process, follow these steps:

1 In the navigation pane, under Processes, GCDs, & Operations, right-click on the process
you want to copy. Select Copy Process/Operation... from the context menu. The Copy
Process dialog appears.

2 In the Copy Process dialog, modify the following sections, if necessary:

New Name: enter a name for the new process.

Create New Copies of CSL Files: leave this checked if you want to also copy all the
modules associated with some of the process’s potential descendent operations.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 119

Uncheck it, if you want to use some of the identical potential descendent operation
modules.

Select Operation(s) to Add: leave checked only those operations that you want to serve
as potential descendents of the new process. Expand the GCD-operation tree, if
necessary.

3 Modify the template for the component GCD to refer to the new process (and modify
templates for new operations, if any)--see Working with Templates. Create or modify
the appropriate CSL modules.

Creating a Process with Standard Taxonomy and Machine Selection Modules

This section describes how to create a new process with standard taxonomy and
machine selection modules. These modules contain standard accounting formulas, and
can serve as a starting point for development of the new process’s CSL modules. Here
is a portion of the standard CSL from the taxonomy module:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 120

Here is the standard CSL from the machine selection module:

You can also optionally specify a machine type to copy.

Follow these steps:

1 Select Create New Process from the Tools menu.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 121

The Create Process dialog appears:

2 Fill in the following dialog fields:

• VPE name: VPE to which you want to add a new process. Setting this field
populates the dropdown list of choices for the Process Group field.

• Process Group: process group to which you want to add the new process.
Setting this field populates the dropdown list of choices for the Source machine
table field.

• New Process Name: name of the new process.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 122

• Source machine table: process whose machine type you want to copy. Only
processes in the specified process group are available. Leave this field blank
if you don’t want to copy a machine type.

3 Click OK to make the specified changes. A notification dialog appears:

4 Click OK in the notification dialog. aPriori opens the modified cost model in the
CMWB, if it’s not already open.

Note: your changes are not saved to your private workspace until you publish the
changes to the public cost model (see step 6, below). That is, unless you publish the
changes, they will not persist across invocations of aPriori.

5 Be sure to modify the template for the component GCD to refer to the new process--
see Working with Templates.

6 To save the changes to your private workspace and incorporate the changes into the

public cost model, select Publish Cost Model and VPE from the File menu, or click in
the toolbar.

Creating a Process from Scratch

To create a new process from scratch, follow these steps:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 123

1 Right-click on any node in the navigation pane, and select New > Process... from the
context menu. The New Process dialog appears.

2 Enter a name for the new process.

3 Modify the template for the component GCD to refer to the new process—see
Working with Templates. Create or modify the appropriate CSL modules.

If you want the new process to be a secondary process, define the node attribute
displayinSPDialog on the node for the new process, and set it to true—see Working with
Node Attributes.

Creating and Copying Operations

To create a new operation by copying an existing operation, follow these steps:

1 In the navigation pane, under Processes, GCDs, & Operations, right-click on the
operation you want to copy. Select Copy Process/Operation... from the context menu.
The Copy Process dialog appears.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 124

Note that new operation is associated with the same GCD type as the copied
operation.

2 In the Copy Process dialog, modify the following sections, if necessary:

New Name: enter a name for the new operation.

Create New Copies of CSL Files: leave this checked if you want to also copy all the
modules associated with some of the operation’s potential descendent operations.
Uncheck it, if you want to use some of the identical potential descendent operation
modules.

Select Operation(s) to Add: leave checked only those operations that you want to serve
as potential descendents of the new operation. Expand the GCD-operation tree, if
necessary.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 125

3 Modify the template for the new operation’s associated GCD to refer to the new
operation (and modify the templates for its descendents, if any)—see Working with .
Create or modify the appropriate CSL modules.

To create a new operation from scratch, follow these steps:

1 In the navigation pane, under Processes, GCDs, & Operations, right-click on the GCD
type whose creation the new operation contributes to. Select New > Operation... from
the context menu. The New Operation dialog appears.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 126

2 In the New Operation dialog, modify the following sections, if necessary:

Name: enter a name for the new operation.

Parent Process/Operation: specify the parent process or operation.

GCD: specify the new operation’s associated GCD type, the GCD type to whose
creation the new operation contributes.

3 Modify the template for the new operation’s associated GCD to refer to the new
operation (and modify the templates for its descendents, if any)—see Working with .
Create or modify the appropriate CSL modules.

Creating Branch Nodes

To create a new branch node, follow these steps:

1 In the navigation pane, under Templates, right-click on the GCD type whose template
will refer to the new branch node. Select New > Branch Node... from the context menu.
The New Branch Node dialog appears.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 127

2 In the New Branch Node dialog, modify the following sections, if necessary:

Name: enter a name for the new operation.

GCD: specify the new branch node’s associated GCD type, the GCD type whose
template will refer to the new branch node..

3 Modify the template for the new branch node’s associated GCD type to refer to the
new branch node—see Working with Create or modify the appropriate CSL
modules.

Deleting Processes, Operations, and Branch Nodes

To delete a process, operation, or branch node, follow these steps:

1 Delete any references to the process, operation, or branch node, such as CSL
modules associated with the process or operation, as well as template references to
the process or operation.

2 Right-click the node in the CMWB navigation pane, and select Delete Object from the
context menu.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 128

Working with Formula Tables
Each CSL module has an associated formula table that must list all output formulas
(which can be included in results provided by costing tables and reports, as well as in
formula dependency trees). If you create or modify a CSL module to include new output
formulas, you must modify its associated formula table.

To modify the formula table, you must first select Override Object from the Edit menu, or

click the override icon, , in the toolbar; and you must publish your changes when
done. Fields with a pencil, , icon are editable.

See the following sections for more information:

▪ Adding a Formula to the Formula Table

▪ Controlling Whether a Custom Output Appears in the Part Details Tab

Adding a Formula to the Formula Table

To add a formula, follow these steps:

1 Select Override Object from the Edit menu, or click the override icon, , in the
toolbar.

2 Click in the empty Formula Name field of the last line of the table.

3 Enter information in the following fields:

o Formula Name: enter name of the formula (one of the names listed above)

o Display Name: enter the name as you want it to appear in end user tables and
reports.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 129

o Unit Type Name: select the type of units for the formula value.

o Unit: units for the formula value. This field is not editable; it is determined by
the Unit Type Name field.

o Inverted Goodness: set this to false. (This toggles the red/green arrows in the
UI. By default ("false"), smaller values are considered desirable (as in the
case of costs), and therefore are displayed with green arrows. However, a
smaller value for an item such as feed rate could be considered a negative,
and setting Inverted Goodness to "true" allows it to be displayed with a red
arrow.)

o Display: set this to true if you want the formula value included in end user
tables and reports; set this to false otherwise. See also Controlling Whether a
Custom Output Appears in the Part Details Tab.

o Dependency Tree Visibility: Set this value to determine the behavior of the right-
click Show Formula Dependencies command in the UI, so that it displays
information that is relevant to the end user. Possible settings are ALWAYS,
NEVER, WHEN_NONZERO, or unset. Currently the Formula Dependencies
window is populated only for direct and indirect rates. The "correct" setting for
a given formula is somewhat subjective, but here are some guidelines:

- WHEN_NONZERO – Use this if formula relevance is determined by another
setting such as a cost model variable or a site variable. To have formula
relevance be driven by these global toggles,you need to set the visibility to
WHEN_NONZERO and (when it is irrelevant in the calculation) force it to
evaluate to zero.

- NEVER – You would typically use this setting only when you have a formula
that does not show up in the UI, but which could be referenced in a
spreadsheet report. Or for a formula that will be used in PSOs and which is
collected by a parent node. Other possible uses would be for a standard
formula whose equations are not set up properly to display in the dialog, or
for an insignificant calculation such as a "fudge factor".

- ALWAYS – This is the most typical selection for new formulas. The formula
will show up in the dependency tree and the user will be able to see (and
override) the value directly from the Formula Dependencies window even if it
computes to zero.

Note: If Dependency Tree Visibility is unset, the behavior is the same as if it had been
set to ALWAYS.

o Overridable: set this to true if users should be able to override the value for this
formula in the UI.

Note: At the Site Cost Model level, this column is labeled Overridable At, and its
values define contexts in which the result of the particular formula can be
overridden: BRANCH, PROCESS, OPERATION, or
UTILIZATION_PROCESS.

o Description: enter an optional description of the formula.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 130

Note that if you’ve already defined a process setup option that refers to a formula, the
formula is automatically added to the formula table.

Controlling Whether a Custom Output Appears in the Part
Details Tab

In a CSL formula table, a custom output's value for the Display column controls whether it
appears in the Part Details tab of the aPriori Professional interface.

(Note that to view custom outputs, which are process-group-specific outputs, you must
enable a table view that includes Custom Outputs in the Displayed Fields column of the
Manage Part Details Views dialog—see the section Part Details and Assembly Details
and the section Creating New Views in the aPriori Cost Tables chapter of the aPriori
Professional User Guide.)

To specify whether a custom output should appear in the Part Details tab, follow these
stpes:

1 Select Override Object from the Edit menu, or click the override icon, , in the
toolbar.

2 Find the output of interest in the formula table, and ensure that it has a pencil, , in
the Display field. (The pencil indicates that the field is editable.)

3 Set the Display field to true if you want the formula value included in the Part Details
tab; set it to false otherwise.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 131

Formulas with true in the Display field are included under Custom Outputs in the Part
Details tab:

Template Pruning
As with feasibility modules (see Process and Operation Feasibility), you can use
template pruning modules to eliminate routings from consideration by the cost engine.
When the cost engine evaluates a feasibility module, it can identify a particular routing
as infeasible (and eliminate it from consideration); in contrast, when the cost engine
evaluates a pruning module, it can identify a large class of routings as infeasible.

A template pruning module eliminates a node (together with all its descendent nodes)
from a routing template, saving the cost engine the trouble of expanding the pruned
template portion and preventing consideration of the individual routings that expansion
would have produced. For example, a pruning module might eliminate, for parts that
have no turning axes, all routings with rotational processes (which are contained in a
single subtree of the template).

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has a template pruning module, the
module’s Type Name field is set templatePruningRule and the label templatePruningRule

appears next to the folder icon.

This section includes the following subsections:

▪ Context of Evaluation

▪ Example

Context of Evaluation

During template expansion, the cost engine visits each template node, and evaluates the
node’s associated template pruning module, if there is one. If a node’s template pruning
module returns false, the node is removed from the template. All the node’s

descendents in the template are removed as well. Note that, unlike feasibility modules,
template pruning modules are not evaluated in the context of a candidate material stock.
See Cost Engine Details.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 132

Example

Consider, for example, the machining process group in aPriori starting point VPEs. The
process routing template node Rotational has an associated pruning module. This

module eliminates all turning routings for parts that have no valid turning axis.

Here is a simplified version of this file:

Rule HasTurningAxes: (countTurningAxes > 0)

Message HasTurningAxes: 'PRUNE: ' + _

 'Skip Turning Routings: this part has no turning axes and would

not benefit.'

// Total count of turning axes extracted

countTurningAxes = _

 select count(x) from part.childArtifacts x where isTurningAxis(x)

This module has one rule and one function definition.

The function uses a query to count the current part’s turning axes. The query effectively
forms the set of child GCDs that are turning axes, and then returns the number of
elements in that set. The query is composed of these expressions:

▪ count(x): Query aggregate function (see Query Expressions in CSL chapter)

that returns the number of elements in the collection formed by the query.

▪ part.childArtifacts: Object access that uses the childArtifacts attribute

of the current part (designated by the standard CSL input part) to retrieve the

collection of the current part’s child GCDs.

▪ isTurningAxis(x): builtin CSL function that returns true if the specified GCD is

a turning axis; returns false otherwise. This filters the child GCDs, so that only
those that are turning axes are included in the collection formed by the query.

The rule tests whether the function result (the number of turning axes that are child
GCDs of the current part) is greater than 0. If the rule evaluates to true, the Rotational
node is retained in the template, and the cost engine generates the routing that it (and its
descendents) represent. If the rule evaluates to false, the Rotation node (together with
all its descendents) is pruned, and the cost engine never generates the individual
routings that it represents.

Material Stock Selection
Some process groups use material stock. The material that is used by such process
groups has some form or structure even before the manufacturing process begins. For
the sheet metal process group, for example, the material takes the form of a metal
sheet; for plastic molding, in contrast, the material takes the form of an unstructured
volume or mass of plastic pellets.

For process groups that use material stock, the cost model data specifies a list of
available stocks for each type of material (see Working with Cost Model Data and

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 133

Metadata). For a particular part, the end user can explicitly specify the stock to use;
alternatively, the end user can let aPriori select the stock. For cases in which the end
user has elected to let aPriori select the material stock, you can supply a material stock
selection module to narrow down the available stocks to those that are feasible or
desirable for the current part.

For example, for sheet metal parts, a stock selection module can check the geometry of
the part, and eliminate stocks whose dimensions are exceeded by the blank dimensions.

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has a material stock selection module,
the module’s Type Name field is set materialStockSelector and the label

materialStockSelector appears next to the folder icon.

This section includes the following subsections:

▪ Context of Evaluation

▪ Finding or Designating a Routing’s Stock Selector

▪ Stock Selector Input

▪ Stock Selector Outputs

▪ Example

Context of Evaluation

After the cost engine expands process templates, it considers each resulting routing in
turn. For each routing, it evaluates the routing’s stock selector, and then for each
resulting stock, it visits each process in the routing in order to perform process feasibility
checks, machine selection, operation assignment, and operation and process costing
(see Cost Engine Details).

So each stock selector is evaluated in the context of a particular process routing. But, for
that routing, machines have not yet been selected, operations have not been assigned,
and no processes or operations have been costed.

Finding or Designating a Routing’s Stock Selector

A process routing’s stock selection module is associated with one of the routing’s nodes.
Typically, a routing’s stock selector is associated with the process called Material Stock. In
some cases, to allow different routings to have different stock selectors, multiple nodes
have stock selector modules, but only one is evaluated by the cost engine for a given
routing.

The simplest way for a routing to designate the stock selector node is by the presence of
the node attribute utilizationProcess, where the attribute has no value. If there is more
than one node with this attribute (and they are all valueless), the cost engine treats the
right-most active one as the stock selector node.

A routing can also designate the stock selector node by specifying the node’s name as
the value of utilizationProcess for some other node in the routing. If there is more than one
node with a value for this attribute, the left-most one specifies the name of the stock
selector node.

For example, for the sheet metal process group, if a routing includes the branch node
Prog Die, which has a node attribute utilizationProcess whose value is Progressive

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 134

Die, the cost engine evaluates the stock selection module associated with Progressive

Die (assuming no other node has a value for utilizationProcess).

See also Cost Engine Details.

Stock Selector Input

For process groups that use material stock, the complete list of available stocks (for the
current user-selected material) is presented in aPriori’s Material Selection dialog, when the
Material Stock pane is expanded. When the cost engine evaluates a stock selection
module, it puts into scope the CSL standard input stocks, and establishes its value as a

collection that contains each of these available stocks.

Stock Selector Outputs

If the stock selection module establishes a collection of stocks as the value for the CSL
output validMaterialStocks, the cost engine considers each stock in the collection.

If the stock selection module does not establish a non-null value for the CSL output
validMaterialStocks, the cost engine considers only one, virtual stock, specified as

follows:

▪ For the Machining process group, virtual stock dimensions are determined by the
values of other CSL outputs for the stock selection module, the dimensions of the
current part, and plant variables, as follows:

o Length:

- CSL output virtualStockLength, if non-null.

- Otherwise, the larger of the current part’s minStockLength and the value of

the plant variable standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the current part’s minStockLength and 20 feet.

o Width:

- CSL output virtualStockWidth, if non-null.

- Otherwise, the width of the current part’s cross-section.

o Height:

- CSL output virtualStockHeight, if non-null.

- Otherwise, the height of the current part’s cross-section.

o Inside diameter:

- CSL output virtualStockInsideDiameter, if non-null.

- Otherwise, the inside diameter of the current part’s cross-section.

o Outside diameter:

- CSL output virtualStockOutsideDiameter, if non-null.

- Otherwise, the outside diameter of the current part’s cross-section.

o Thickness:

- CSL output virtualStockThickness, if non-null.

- Otherwise, the thickness of the current part’s cross-section..

▪ For the Sheet Metal process group, virtual stock dimensions are determined by
the values of other CSL outputs for the stock selection module, the dimensions of
the current part, and plant variables, as follows:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 135

o Length:

- The larger of the blank’s length and the CSL output virtualStockLength, if

non-null.

- Otherwise, the larger of the blank’s length and the value of the plant variable
standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the blank’s length and 8 feet.

o Width:

- The larger of the blank’s width and the CSL output virtualStockWidth, if

non-null.

- Otherwise, the larger of the blank’s width and the value of the plant variable
standardStockWidth, if the plant variable is defined.

- Otherwise, the larger of the blank’s width and 4 feet.

Example

In aPriori’s starting point VPEs, the sheet metal process Material Stock uses a stock
selection module to find stocks with a length, width, and thickness appropriate for the
current part:

THICKNESS_SNAP = 0.05 // mm error between the actual measured sheet

metal thickness and the closest actual stock size

validMaterialStocks = select from stocks as s where _

 equalsEps(s.thickness, part.thickness, THICKNESS_SNAP) and _

 ((part.blankBoxLength <= s.length and part.blankBoxWidth <=

s.width) or _

 ((part.blankBoxLength <= s.width and part.blankBoxWidth <=

s.length)))

This query uses the following simple identifiers:

▪ validMaterialStocks is the module’s output.

▪ stocks is the CSL standard input containing each initially available stock.

▪ s is, in effect, bound to each element of stocks in turn.

▪ part is the CSL standard input designating the current part.

▪ THICKNESS_SNAP is a constant, the maximum allowable difference between stock

and part thickness.

The query assigns to validMaterialStocks a collection that contains the elements of

stock that meet both the following conditions:

▪ The stock’s thickness is within THICKNESS_SNAP of the part’s thickness.

▪ The part’s blank fits on the stock, that is one of the following is true:

o The blank’s length and width are less than the stock’s length and width

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 136

o The blank’s length is less than the stock’s width and the blank’s width is less
than the stock’s length.

Process and Operation Optionality
For optional processes and operations, optionality modules can help determine whether
the cost engine considers the process or operation to be required in order for the current
process routing or operation sequence to make the current part or GCD. Here is how
being required affects routing:

▪ If a process or operation is not required, it is removed from the current routing or
sequence.

▪ If a process or operation is required and feasible, it is included in the current
routing or sequence.

▪ If a process or operation is required and not feasible, the current routing or
sequence fails.

A process or operation is required if and only if it is not user-excluded (see the aPriori
User Guide) and any of the following is true of it:

▪ Is user included (see the aPriori User Guide).

▪ Has a taxonomy module whose evaluation yields no results.

▪ Has an optionality module that returns true.

▪ Has at least one required (in the sense described here) child in the process-
operation hierarchy (see Cost Engine Details).

The code in an optionality module should specify the conditions under which the
associated process or operation is required to be included in a process routing or
operation sequence in order for that routing or sequence to successfully create a given
part or GCD (assuming there are no required children of the process or operation—if
there are required children, the process or operation is required, regardless of what its
optionality module returns).

Only an optional node can have an optionality module.

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has an optionality module, the module’s
Type Name field is set optionalProcess or optionalOperation, and the label

optionalProcess or optoinalOperation appears next to the folder icon.

Optionality module names start with opt and end with .csl.

This section includes the following subsections:

▪ Context of Evaluation

▪ Example

Context of Evaluation

These types of modules are evaluated in the context of a process routing or operation
sequence that includes the current node.

The cost engine has established a process-operation hierarchy that includes the nodes
in the current routing or sequence and all their ancestors. The cost engine has not yet

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 137

established the portion of the process-operation hierarchy below the nodes in the current
routing or sequence. The cost engine might not have yet established the portion that
includes operations to create a given sibling (in the GCD hierarchy) of the current GCD.

The cost engine has chosen a particular candidate material stock (if relevant). A
machine or tool for the current node has not yet been chosen, and no nodes have yet
been costed.

Example

Here is a machining optionality module for the operation branch node Edge Treatments

in the template for the GCD type Edge. This node stands for operations such as
deburring, rounding, and chamfering. This module checks to see if any such operations
are required for the current GCD.

Plant variables control whether aPriori should automatically determine whether deburring
is necessary. The cost model assumes that deburring is necessary for sharp edges that
were not created either by turning or (for hole edges) by a sheet metal operation.

Other kinds of edge treatment for hole edges are assumed to be necessary for round
edges that are part of non-flanged holes and for chamfers that are part of holes that
have not been previously countersunk.

The code divides edge treatment operations into the following categories:

▪ Non-hole edge deburring: This is required if and only if all the following are true
of the edge:

o External edge and the plant variable autoSelectExternalEdgesForDebur is set to
true or is an internal edge and plant variable autoSelectInernalEdgesForDebur is

set to true.

o Sharp.

o Not a child GCD of a simple hole.

o Has no coincident turning axis (and so is not created by turning operation).

▪ Hole edge deburring: This is required if and only if all the following are true of the
edge:

o Sharp.

o Not created by a sheet metal operation.

o Child GCD of a simple hole.

o Plant variable autoDeburSharpHoleEdges is set to true.

o Has no coincident turning axis (and so is not created by turning operation).

▪ Hole edge machining: This is required if and only if either of the following is true
of the edge:

o Round and non-flanged.

o Chamfer and not previously countersunk.

import libSetups.csl

Rule IsEdgeTreatmentsRequired: _

 IsEdgeDeburringRequired or IsHoleEdgeDeburringRequired or _

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 138

 IsHoleEdgeMachiningRequired

Message IsEdgeTreatmentsRequired: OLT + _

 'Edge treatments, e.g., rounding, chamfering, countersinking, ‘ _

 ‘edge turning or deburring, are not required'

IsEdgeDeburringRequired = _

 {true if (_

 (_

 (plant.autoSelectExternalEdgesForDebur == true

and _

 gcd.internal == false)_

 or _

 (plant.autoSelectInternalEdgesForDebur == true

and _

 gcd.internal == true) _

)

 and _

 gcd.edgeTypeName == 'SHARP' _

 and _

 hasNoParentGcd _

 and _

 GetCoincidentTurningAxis(gcd) == null

) _

 false otherwise}

IsHoleEdgeDeburringRequired = _

 {true if _

 gcd.edgeTypeName == 'SHARP' and _

 part.processGroupName != 'Sheet Metal' and _

 hasParentGcd and plant.autoDeburrSharpHoleEdges ==true and _

 GetCoincidentTurningAxis(gcd.parentArtifact) == null _

 false otherwise}

IsHoleEdgeMachiningRequired = _

 {true if (_

 (gcd.edgeTypeName == 'ROUND' and not(isFlangedHoleEdge))) or _

 (gcd.edgeTypeName == 'CHAMFER' and

not(previousCounterSunkEdge)

) _

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 139

 false otherwise}

previousCounterSunkEdge =

 {hasNodeInTree(op.parentArtifactResult, 'PreviouslyCountersunk')

_

 if (_

 op.parentArtifactResult != null and _

 op.parentArtifactResult.artifactTypeName == 'SimpleHole' and _

 gcd.parentArtifact.isCountersunk == true _

) _

 false otherwise _

 }

isFlangedHoleEdge = _

 {true if _

 gcd.parentArtifact != null and _

 gcd.parentArtifact.artifactTypeName == 'SimpleHole' and _

 gcd.parentArtifact.isFlanged == true

 false otherwise _

 }

hasNoParentGcd = _

 {false if gcd.parentArtifact.artifactTypeName == 'SimpleHole'

true otherwise}

hasParentGcd = _

 {true if gcd.parentArtifact.artifactTypeName == 'SimpleHole'

false otherwise}

The rule in this module refers to three boolean-valued formulas, corresponding to the
three categories described above:

▪ IsEdgeDeburringRequired

▪ IsHoleEdgeDeburringRequired

▪ IsHoleEdgeMachiningRequired

IsEdgeDeburringRequired refers to the formula hasNoParentGCD. The formula,

defined later in the module, is true if and only if the current GCD is not part of a simple
hole.

IsHoleEdgeDeburringRequired refers to the formula hasParentGCD. The formula,

defined later in the module, is true if and only if the current GCD is part of a simple hole.

IsHoleEdgeMachiningRequired refers to the following formulas:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 140

▪ previousCountersunkEdge: true if the current edge is part of a previously

countersunk simple hole; false otherwise.

▪ isFlangedHoleEdge: true if the current edge is a part of a flanged, simple hole;

false otherwise.

The formulas use the following CSL standard inputs:

▪ gcd: current GCD. has one field for each attribute of the current GCD. This code

uses the following attributes:

o artifactTypeName: names the specified GCD’s type; string valued. Used here to

determine if the edge’s parent is a simple hole.

o edgeTypeName: is used to determine if the specified GCD is a sharp edge,

round, or chamfer; string valued.

o internal: indicates whether the specified GCD is an internal or external

edge; boolean valued.

o isFlanged: true if the specified GCD is flanged; false otherwise.

o isCountersunk: true if the specified GCD is countersunk; false otherwise.

o parentAtrifact: parent of the specified GCD in the GCD hierarchy.

▪ op: Current operation. fields include the following:

o parentArtifactResult: parent of the current node in the process-operation

hierarchy.

▪ part: Current part. fields include the following:

o processGroupName: names the current primary process group; string valued.

▪ plant: has one field for each plant variable. This code accesses the fields for the

following plant variables:

o autoDeburSharpHoleEdges

o autoSelectExternalEdgesForDebur

o autoSelectInernalEdgesForDebur

The formulas also use the following functions:

▪ GetCoincidentTurningAxis, defined in the imported library file

libSetups.csl. The function returns null if and only if there is no turning axis

that is coincident with the argument’s axis.

▪ hasNodeInTree: CSL predefined function. Returns true if the specified node or

one of its descendents has a node attribute named by the specified string.

Process and Operation Feasibility
For a non-optional process or operation, feasibility modules are used to specify two
kinds of conditions:

▪ Conditions under which it is possible (in the context of the current routing) to use
the process or operation in the creation of the current part. If the conditions aren’t
met, the current routing fails.

▪ Conditions under which it is required (in the context of the current routing) to use
the process or operation in the creation of the current part. If the conditions aren’t
met, the current routing fails.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 141

For an optional process or operation, the feasibility module specifies just the first kind of
condition (conditions under which it is possible); the optionality module specifies the
second kind (see Process and Operation Optionality).

The module should return true if the conditions are met, and return false otherwise.

So for example an injection molding feasibility module might check for compatibility
between the process and the current material; the feasibility module for a tube laser hole
cutting operation might check that the hole is large enough and not flanged, threaded, or
countersunk (see the examples below).

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has a feasibility module, the module’s
Type Name field is set routingRule, and the label routingRule appears next to the folder

icon.

Feasibility module names should start with pfr (for processes) or ofr (for operations)

and end with .csl.

This section includes the following subsections:

▪ Context of Evaluation

▪ Examples

Context of Evaluation

Feasibility modules are evaluated in the context of a process routing or operation
sequence that includes the current node.

The cost engine has established a process-operation hierarchy that includes the nodes
in the current routing or sequence and all their ancestors. The cost engine has not yet
established the descendents in the process-operation hierarchy of the nodes in the
current routing or sequence. The cost engine might not have yet established the portion
of the hierarchy that includes operations to create a given sibling of the current GCD.

The cost engine has chosen a particular candidate material stock (if relevant). A
machine or tool for the current node has not yet been chosen, and no nodes have yet
been costed.

Examples

In aPriori’s starting point cost model for plastic molding, the feasibility module for the
Injection Molding process checks that the current material is compatible with injection
molding.

Rule CompatibleMaterial: material.canIM_SFM

Message CompatibleMaterial: _

 'Failed because you cannot Injection Mold this type of material'

This rule uses the CSL standard input material, which has one field for each attribute

of the current material (as listed in the Material Composition table of aPriori’s Material
Selection dialog). The attribute canIM_SFM is set to true for thermoplastics and false for

thermosetting materials.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 142

In the Bar&Tube process group, the operation that uses a tube laser to create a simple
hole has the following feasibility module:

import libGtolProcessCapabilities.csl

Rule GtolValueOk: IsProcessAllGtolCapable(gcd, 'Laser Cut')

Message GtolValueOk: IsProcessAllGtolCapableMsg(gcd, 'Laser Cut')

Rule NonPositiveDiameter: gcd.diameter > 0

Message NonPositiveDiameter: _

 'Cant laser cut a simple hole with a non-positive diameter: ' + _

 diameter + ' mm'

diameter = roundEps(gcd.diameter, 0.01)

Rule NonPositiveLength: gcd.length > 0

Message NonPositiveLength: _

 'Can t laser cut a simple hole with a non-positive length

(depth): ' + _

 holeLength + ' mm'

holeLength = roundEps(gcd.length, 0.01)

Rule IsFlanged: (not gcd.isFlanged)

Message IsFlanged: _

 'Hole is flanged so cannot be completed by laser cutting'

Rule isUnthreaded: gcd.threaded == false

Message isUnthreaded: _

 'The hole is threaded. Laser cutting alone will not make a

threaded hole'

Rule isNotCountersunk: gcd.isCountersunk == false

Message isNotCountersunk: _

 'The hole is countersunk. Laser Cutting alone will not make a

countersunk hole'

Rule isNotBlind: gcd.isBlind == false

Message isNotBlind: _

 'The hole is blind. A blind hole cannot be laser cut'

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 143

The rules use the following fields of the CSL standard input gcd:

▪ diameter

▪ length

▪ tolerance

▪ isFlanged

▪ threaded

▪ isCountersunk

▪ isBlind

The messages rely on formulas that round off the numerical values to the nearest
1/100th.

The function IsProcessAllGtolCapable is defined in the library

libGtolProcessCapabilities.csl.

Machine Selection
A machine selection module helps aPriori choose a machine that is feasible and
desirable for a given process. A plastic molding machine selection module might, for
example, find the machine with lowest overhead rate that is large enough to
accommodate the current part and has sufficient clamp force and shot size to make the
part (see the example below).

The job of the module is to select a machine and assign it to the CSL output machine.

The list of available machines for a given process is presented in aPriori’s Edit Machine
Selection dialog (right click on a process in the manufacturing process pane). When the
cost engine evaluates a machine selection module, it puts into scope the CSL standard
input machines, and establishes as its value either a collection that contains each of

these available machines or a collection that contains just the user-selected machine,
depending on the machine selection mode.

aPriori has four machine selection modes (see the Edit Machine Selection dialog in aPriori):

▪ aP Select

▪ User Select/ if not feasible, fail to cost

▪ User Select/ if not feasible, auto-select

▪ User Select/do not check feasibility

In aP Select mode, the cost engine establishes the value of machines as a collection all

available machines. If the module fails to establish a non-null value for the CSL output
machine, the current process routing is deemed infeasible.

In User Select/ if not feasible, fail to cost mode, the machine selection module essentially
serves to evaluate the feasibility of the user-selected machine. In this mode, the cost
engine establishes the value of machines as a collection containing just the user-

selected machine. If the user-selected machine is feasible, the module assigns it the
CSL output machine. If the user-selected machine is not feasible, the module leaves the

value of machine null. In this case, the current process routing is deemed infeasible.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 144

In User Select/ if not feasible, auto-select mode, the machine selection module potentially
serves two purposes: to evaluate the feasibility of the user-selected machine, and (if the
module determines that the user-selected machine is infeasible), to select a machine
from the list of all available machine. In this mode, the cost engine might evaluate the
module twice. The cost engine first assigns to machines a collection containing only the

user-selected machine. If the module fails to establish a non-null value for the CSL
output machine, the cost engine evaluates the module again, this time assigning to

machines a collection containing the full list of available machines. If the module still fails

to establish a non-null value for machine, the current process routing is deemed

infeasible.

In User Select/do not check feasibility mode, the cost engine does not evaluate the machine
selection module.

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has a machine selection module, the
module’s Type Name field is set to machineSelectionRule and the label

machineSelectionRule appears next to the folder icon.

Machine selection module names should start with msel and end with .csl.

This section includes the following subsections:

▪ Context of Evaluation

▪ Example

Context of Evaluation

These types of modules are normally evaluated in the context of a process routing (and
possibly a material stock) and a particular routing node, but operation sequences have
not yet been chosen, and no process has yet been costed.

For node’s that have a selectMachineAfterOpAssignment node attribute set to a non-null
value, machine selection is delayed, and performed just before evaluation of the node’s
taxonomy module.

Before performing machine selection for a node, the cost engine checks the node’s
ancestors in the current routing to see if any has a machine selection module of its own.
If one does, the ancestor machine applies to the current node, and the cost engine does
not evaluate the current node’s machine selection module (if it has one).

Example

Below is a portion of the injection molding machine selection module for aPriori’s plastic
molding starting point cost model. The module finds the machine with the lowest
overhead rate that satisfies these criteria:

▪ Large enough for the part’s required mold.

▪ Provides sufficient clamp force for the part and the number of mold cavities.

▪ Can provide the required shot size.

The module assigns to the CSL output machine the result of applying the function

selectMachine to the mold base dimensions.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 145

machine = selectMachine(moldBaseXmm,moldBaseYmm)

selectMachine(moldBaseXmm,moldBaseYmm) = _

 select first(m) from machines m _

 where _

 ClampForceCheck and _

 tieBarHCheck and _

 tieBarVCheck and _

 moldHeightCheck and _

 shotSizeCheck _

 order by m.workCenterOverheadRate

The function selectMachine performs a query that does the following:

▪ Selects the machines that satisfy the various checks (mold size, clamp force, and
shot size), and

▪ Orders the machines by overhead rate (as specified by order by
m.workCenterOverheadRate in the order by clause), from lowest to highest.

The final query result is the first of the selected machines in the specified order (as
specified by the first(m) in the select specification), since it is the least expensive one.

The query contains the following simple identifiers:

▪ machines: CSL standard input

▪ m: in effect, bound to each element of machines in turn. This variable remains in

scope in the rules referred to by the query. The module uses the following fields
of m, which are all machine attributes (found in aPriori’s Edit Machine Selection

dialog):

o workCenterOverheadRate

o tieBarDistanceH

o name

o tieBarDistanceV

o maxMoldHeight

o shotSize

o clampForce

▪ ClampForceCheck: rule (shown below) in the same module that compares the

machine clamp force with the required clamp force. Required clamp force is
calculated by a formula in the same module, shown below.

▪ tieBarHCheck: rule (shown below) in the same module that compares the

machine and mold dimensions, shown below.

▪ tieBarVCheck: rule (shown below) in the same module that compares the

machine and mold dimensions, shown below.

▪ moldHeightCheck: rule (shown below) in the same module that compares the

machine and mold dimensions, shown below.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 146

▪ shotSizeCheck: rule (shown below) in the same module that compares the

maximum machine shot size with required shot size. Required shot size is
calculated by a formula in the same module, shown below.

Some values are rounded off to less precise values for use in messages.

Rule tieBarHCheck: m.tieBarDistanceH >= moldBaseXmm

Message tieBarHCheck: m.name + _

 ' is not feasible. The mold base horizontal dimension ' + '(' + _

 roundMoldBaseX + _

 'mm) is greater than the horizontal distance between the tie

bars (' + _

 maxTieBarDistanceH + 'mm)'

roundMoldBaseX = roundEps(moldBaseXmm, 1)

maxTieBarDistanceH = m.tieBarDistanceH

Rule tieBarVCheck: m.tieBarDistanceV >= moldBaseYmm

Message tieBarVCheck: m.name + _

 ' is not feasible. The mold base vertical dimension ' + '(' + _

 roundMoldBaseY + _

 'mm) is greater than the vertical distance between the tie bars

(' + _

 maxTieBarDistanceV + 'mm)'

roundMoldBaseY = roundEps(moldBaseYmm, 1)

maxTieBarDistanceV = m.tieBarDistanceV

Rule moldHeightCheck: m.maxMoldHeight >= moldBaseHeight

Message moldHeightCheck: m.name + _

 ' is not feasible. The required mold base height ' + '(' + _

 roundMoldBaseHeight + _

 'mm) is greater than the maximum mold height for this machine ('

+ _

 maxMoldHeight + 'mm)'

roundMoldBaseHeight = roundEps(moldBaseHeight, 1)

maxMoldHeight = m.maxMoldHeight

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 147

moldBaseHeight = 2 * part.boxHeight

Rule shotSizeCheck: m.shotSize >= requiredShotSize

Message shotSizeCheck: m.name + _

 ' is not feasible. The required shot size ' + '(' + _

 roundrequiredShotSize + _

 'g) is greater than the maximum shot size for this machine (' +

_

 maxShotSize + 'g of polystyrene)'

roundrequiredShotSize = roundEps(requiredShotSize , 1)

maxShotSize = m.shotSize //units are in grams of polystyrene

requiredShotSize = plant.shotSizeSafetyFactor * _

 (part.volume * numCavities *

plant.densityPolystyreneForShotSize)/1000000

Rule ClampForceCheck: m.clampForce >= requiredForce

Message ClampForceCheck: m.name + _

 ' is not feasible. The required clamp force ' + _

 '(' + roundRequiredForce + _

 'kN) is greater than the max clamp force of this machine (' + _

 maxClampForce + 'kN)'

roundRequiredForce = roundEps(requiredForce, 1)

maxClampForce = m.clampForce

requiredForce = _

 ((part.projectedArea * numCavities) + runnerArea) * _

 material.clampingMNPerSqM * plant.clampForceSafetyFactor /

1000

runnerArea = numCavities * (partLength + partWidth) *

nominalWallThickness

Portions of the module not shown above retrieve or calculate the following:

▪ moldBaseXmm, moldBaseYmm: horizontal and vertical mold base dimensions.

▪ numCavities: number of mold cavities (user-specified or based on required

number to satisfy production requirements)

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 148

▪ nominalWallThickness: Number to summarize part wall thicknesses for cool

time and clamp force calculations.

Tool Selection
A tool selection module helps aPriori choose a tool that is feasible and desirable for a
given operation. A machining tool selection module might, for example, find the lowest
cost tool with an adequate reach, hardness, diameter, and cutting speed (see the
example below).

The job of the module is to select a tool and assign it to the CSL output tool.

When the cost engine evaluates a tool selection module, it puts into scope the CSL
standard input tools, and establishes as its value a collection that contains each of the

available tools.

When you navigate to the CSL modules for a node (see Navigating from the Template
Graph to the Data for a Given Node), if the node has a tool selection module, the
module’s Type Name field is set to toolLookup and the label toolLookup appears next to

the folder icon.

Tool selection module names should start with tool and end with .csl.

Tool selection modules are evaluated in the context of a process routing or operation
sequence that includes the current node.

The cost engine has established a process-operation hierarchy that includes the nodes
in the current routing or sequence and all their ancestors. The cost engine has not yet
established the descendents in the process-operation hierarchy of the nodes in the
current routing or sequence. The cost engine might not have yet established the portion
of the hierarchy that includes operations to create a given sibling of the current GCD.

The cost engine has chosen a particular candidate material stock (if relevant). No nodes
have yet been costed.

Process and Operation Taxonomy
Taxonomy modules contain the heart of a cost model’s logic. They calculate the costs in
various categories (such as tooling costs, labor costs, and overhead costs), associated
with performing a process or operation. In order to calculate costs, these modules
calculate times (such as cycle times), material utilization, and other physical and
monetary quantities. The outputs of a taxonomy module are specified in the module’s
associated formula table (see Navigating from the Template Graph to the Data for a
Given Node), and are presented in aPriori’s Part Details tab.

The Site Cost Model taxonomy file (see Root and Site Cost Model Formulas in the Cost
Model Guide) aggregates the costs across processes, for presentation in aPriori’s Cost
Summary, Part Details, Investment tabs. Each process or operation aggregates the costs
and other physical quantities across its children in the process-operation hierarchy (for
example, by using the CSL standard input childOps).

This section includes the following subsections:

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 149

▪ Context of Evaluation

▪ Example

Context of Evaluation

Process taxonomy modules are evaluated for each feasible process in the context of a
particular stock selection, process routing, and machine selection. A routing’s process
taxonomy modules are evaluated after costing of all the routing’s descendent operations.

Operation taxonomy modules are evaluated (if present) for each feasible operation in the
context of a particular stock selection, process routing, machine selection, GCD,
operation sequence, and tool selection. Costing proceeds in a bottom-up fashion; an
operation’s taxonomy module is evaluated after costing of all the operation’s descendant
operations. That way, an operation taxonomy module can access the results of the
modules associated with its children in the process-operation hierarchy, in order, for
example, to aggregate their costs.

Example

Below is a taxonomy module portion for the Bar&Tube operation that creates a simple
hole with a tube laser. This portion calculates the output cycleTime, the time required

for creation of a simple hole. The main formula sums three quantities:

▪ holeRapidTraverseTime: Time required for positioning the part so that the

machine’s laser is directed at a point along the desired location for the hole’s
perimeter. Calculated based on the average distance between holes and the
current machine’s feed rate (machine.tubeAxialBarFeedRate).

▪ holePierceTime: Time required for the initial penetration of the part through the

stock’s entire thickness. Obtained from a lookup table, based on material,
machine power, and part thickness. If the part is thicker than maximum thickness
handled by the lookup table, a failure message is issued, and the table’s longest
pierce time is used.

▪ holeCutTime: Cutting along the perimeter of the hole, starting and ending at the

pierce location. Calculated based on the hole circumference and machine feed
rate. The machine’s small feature feed rate is used for holes that are considered
small features as determined by machine attributes and hole radius; the
machine’s large feature feed rate us used otherwise.

Here is the code:

cycleTime = cycleTimePerOp

cycleTimePerOp = holeRapidTraverseTime + holePierceTime +

holeCutTime //secs

holeRapidTraverseTime = _

 (averageDistanceBetweenHoles / machine.tubeAxialBarFeedRate)

//secs

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 150

averageDistanceBetweenHoles = divZero(part.minStockLength, numHoles

)

numHoles = _

 select count(a) from part.childArtifacts a where _

 a.artifactType.name=='SimpleHole' or _

 a.artifactType.name=='ComplexHole' or _

 a.artifactType.name=='MultiStepHole'

holePierceTime = pierceTime

smallFeatureRadius = max(_

 machine.smallFeatureFeedRadius, _

 machine.smallFeatureThicknessRatio * part.crossSection.thickness

_

)

perimeter = gcd.perimeter

holeRadius = gcd.diameter / 2

holeCutTime = { _

 (perimeter * secsPerMin /feedRateLargeFeatures) if _

 (holeRadius > smallFeatureRadius)

 (perimeter * secsPerMin / feedRateSmallFeatures) otherwise _

}

// Get pierce time depending on material composition and type

pierceTime = { _

 cutRateEntry.pierceTime if cutRateEntry != null

 fail(msg(FLT, 'Cutting rate not available for the selected

material, _

 ', material.name, _

 ' , in tubeLaserCutting table.', FRT)) _

 if cutRateEntry == null and useSlowestEntry == null

 useSlowestEntry.pierceTime otherwise _

} //secs units

The code uses the following predefined functions:

▪ divZero: Returns the quotient of the arguments; return 0 if the second argument is 0.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 151

▪ max: Returns the larger of the arguments.

▪ fail: Halts evaluation, causes costing to fail, and issues a failure message to the aPriori message

pane.

The code uses the following auxiliary formulas:

▪ numHoles, the number of holes (used together with part.minStockLength to

calculate the average distance between holes) is determined with a query that
counts the number of each type of hole (not just simple holes).

▪ smallFeatureRadius (used to determine the cutoff between large and small

features) is the larger of the following:

o Machine attribute smallFeatureRadius

o Product of the machine attribute smallFeatureThicknessRatio and the

thickness attribute of the part cross section

Code not shown above uses the lookup table tubeLaserCutting to retrieve the table

entries cutRateEntry and useSlowestEntry.

In order to access this operation’s cycle time results (along with the times for other
operations), the laser cutting process taxonomy file uses the following formula:

sumOpsCycleTime = select sum(operation.cycleTime) from childOps

operation

Here, childOps is a CSL standard input whose value is the collection the current

process’s children in the process operation hierarchy. Each element of the collection has
a field for each output of the element’s associated CSL modules. The query designates
the sum of the cycle times calculated by each child operation’s taxonomy module.

Working with Zero-or-More Nodes
In some cases, a cost model requires an operation node to have multiple occurrences,
where the number of occurrences is determined by cost model logic. There are two ways
to implement this logic:

▪ With a zero-or-more template node (see Working with Templates) and an
associated zeroOrMoreOperation Module

▪ With a zero-or-more template node and an associated occurrence generator
Java plugin

The first approach is the simpler one: add a CSL module named zeroOrMoreOperation to
the node. The CSL must contain a formula named numOperations which gets evaluated in
order to determine the number of occurrences of the node.

Some existing cost models use a node occurrence generator instead of a
zeroOrMoreOperations module. A generator is a Java plugin that provides the logic to
create occurrences of zero-or-more nodes. The plugin may, in turn, call additional CSL
modules to provide configurability, evaluating, for example, CSL-based operation
precedence and/or compatibility rules in order to group operations under node instances.
Sheet Metal – Transfer Die, for example, uses a generator to group operations by die
station; the generator produces one occurrence of the parent operation Die Station for

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 152

each distinct die station that the part requires. Similarly, Machining uses a generator to
group operations by setup axis, and generates one occurrence of the parent operation
Setup for each group.

The occurrence generator plugin is specified by the node attribute generatorName (see
Working with Node Attributes). Any precedence and compatibility rules are specified in
CSL modules, for example, operationPrecedence, operationTypePrecedence, and
operationCompatibility modules, though the exact set of modules supported is specific to
a given plugin. These modules have standard inputs for an ordered pair of operations,
and contain rules that evaluate to true if, for example, the first operation in the pair must
precede the second (precedence rules), or if both operations may be grouped on the
same node instance (compatibility rules).

(Note that for operationCompatibility modules, you can improve performance by
disabling the grouping of compatible operations under circumstances in which such
grouping is not needed. To do this, add an ignoreOperationCompatibilityCSL formula to the
operationCompatibility module, and have it evaluate to true when compatibility grouping
is unnecessary.)

If both a zeroOrMoreOperations module and an occurrence generator are associated
with a zero-or-more node, the cost engine uses the generator. If neither are present, the
cost engine generates a single occurrence of the node, and issues a warning in the log:

No csl found for ZeroOrMoreNode <node-name>. Creating 1 instance of

node

The following instance generators are used by current and past cost models:

▪ com.fbc.businessmodel.costing.machining.SetupAllocator: used to allocate
operations to machining setups; groups operations based on their setup axes
then runs compatibility CSL to determine any further subdivision of these
groupings.

▪ com.fbc.businessmodel.costing.machining.SetupAllocator2: minor variant of
SetupAllocator; allows child operations of a multi-step hole to be assigned to
different setups.

▪ com.fbc.businessmodel.costing.tree.eval.StageGenerator: generic stage
generator; calls precedence CSL to group operations based on those that must
be performed before others, then calls compatibility CSL to further subdivide
these groups.

▪ com.fbc.businessmodel.costing.tree.eval.StageGenerator2: minor variant of
StageGenerator; evaluation of operation precedence ignores implied ordering
based on operation sequences.

▪ com.fbc.businessmodel.costing.tree.eval.StageGeneratorProcess: variant of
StageGenerator2; considers the top-level processes rather than individual
operations. (Not currently in use in starting point cost models.)

▪ com.fbc.businessmodel.costing.tree.eval.DieStationGenerator: variant of
StageGenerator used for Progress and Transfer Die; supports injection of idle
stations via idleStationCount CSL.

▪ com.fbc.businessmodel.costing.tree.eval.DieStationGenerator2: minor variant of
DieStationGenerator; evalutation of operation precedence ignores implied
ordering based on operation sequences as per StageGenerator2. (Not currently
in use in starting point cost models.)

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 153

Contact aPriori Professional Services for assistance if you think you need to modify a
cost model’s generator-implemented zero-or-more behavior.

Working with Templates
Every routing specifies a sequence of processes or operations. A process routing
specifies a sequence of processes that can be used to produce a part. An operation
sequence specifies a sequence of operations that can be used to produce a given type
of GCD. Process routings and operation sequences have one node for each process or
operation; they can also have additional nodes, branch nodes, which stand for
subsequences consisting of processes or operations.

A template defines a collection of alternative process routings or operation sequences.
As with process routings and operation sequences, process and operation templates
have nodes that represent processes or operations, and have branch nodes that
represent subsequences consisting of processes or operations. But templates also have
another type of branch node with a different purpose—to represent a group of processes
or operations that are alternatives to one another. In this way, a template represents a
set of alternative process routings or operation sequences.

This section has the following subsections:

▪ About Templates

▪ Viewing and Editing Templates

About Templates

Every CSL module is either a global module or is associated with a node in a process or
operation template. Branch nodes that represent subsequences are useful because they
allow association of pruning, optionality, or feasibility conditions with process or
operation subsequences (as opposed to individual processes or operations).

Templates are represented graphically as a set of boxes connected by arrows. (A
template’s graphical representation appears in the CMWB in the bottom part of the
editing pane. You may have to drag the top border of the Info Panel up from near the
bottom of the editing pane in order to make the Info Panel contents visible.)

Templates use three kinds of arrows:

▪ Arrows with v-shaped arrow heads indicate order. Each such arrow points from
one node to its immediate successor node in the sequence.

▪ An arrow with a triangular arrow head connects a branch node to the
subsequence it represents. Each such arrow points from the branch node to the
first member of the subsequence.

▪ An arrow with a diamond-shaped arrow head connects a branch node to one of
the alternatives it stands for. For each alternative associated with a branch node,
there is one such arrow from the branch node to that alternative.

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 154

Branch nodes are shown in grey. Process or operation nodes are shown in blue.
Optional nodes appear with a dashed outline.

Templates are represented textually as follows:

▪ Each node has a name, the name displayed under Processes, GCDs, and Operations
in the CMWB navigation pane. Names that contain a space must be enclosed in
single quotes. No two nodes in the same template should have the same name.

Since a name might not be unique across a process group (and its associated
secondary process groups), it is sometimes necessary to use a pathname. Node
names appear in the Node Attributes tab of the editing pane for a given process,
operation, or branch node. Pathnames are colon-separated lists of names,
consisting of the node name followed by its ancestors in the Processes, GCDs, and
Operations hierarchy, and ending with the name of the process group. Each name
in the path must be enclosed in single quotes if it contains a space.

▪ Node names that are separated by spaces indicate order. The graphical
equivalent is a connection made by an arrow with a v-shaped arrow head.

▪ Each template has a top-level branch node.

▪ A node name followed by ::= indicates a branch node. If ::= is followed by a
space-separated sequence of node names, the branch node stands for a sub-
sequence. The graphical equivalent is a connection from the branch node to the
first node in the sequence by an arrow with a triangular arrow head.

▪ A node name followed by ::=, followed by a vertical-bar-separated (pipe-
separated) sequence of node names indicates a branch node that stands for a
group of alternatives. The graphical equivalent is a group of arrows with
diamond-shaped arrow heads, with an arrow from the branch node to each
alternative.

▪ A node name preceded by a double vertical bar indicates an alternative that must
be user-selected in order to be included in routings generated from the template.
If the alternative is not explicitly selected by the end user, the cost engine does
not include the alternative in generated routings.

▪ Names of optional nodes are enclosed in square brackets when they appear to
the right of ::= (but not when they appear to the left of ::=).

▪ A node name followed by a star, *, indicates a zero-or-more node—see Working
with Zero-or-More Nodes.

▪ Lines that start with # indicate template portions that are not visible to the end
user in aPriori.

Here are some examples of template specification text, together with their corresponding
graphical representations.

#'Tube Laser/[Punch]' ::= 'Material Stock':'Bar & Tube Fab' _

 ['Tube Laser':'Bar & Tube Fab'] [Punching:'Bar & Tube Fab'] _

 [Trimming] Forming

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 155

'Cut To Length' ::= Sawing || Shear:'Bar & Tube Fab'

Sawing ::= 'Band Saw':'Bar & Tube Fab' || 'Circular Saw':'Bar & Tube

Fab' || _

 'Reciprocating Saw':'Bar & Tube Fab'

For more examples, see Adding New Processes and Operations to Templates in
Common Task Examples.

Viewing and Editing Templates

To view and edit a template for a given GCD type, follow these steps:

1 In the CMWB navigation pane, expand the Templates node.

2 Double click the desired GCD type. The template text appears in the editing pane;
the template’s graphical representation appears below it, in the Template Graph tab.
(You may have to drag the top border of the Info Panel up from near the bottom of
the editing pane in order to make the Info Panel contents visible.)

Working With Cost Model Logic CMWB User Guide

aPriori Version 2019 R2 156

Note that process-level templates are associated with the component GCD type.

3 To edit the template, select Override Object from the CMWB Edit menu. You can now
modify the text.

4 Select Save from the File menu to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE
from the File menu.

aPriori Version 2019 R2 157

4 Cost Engine Details

This chapter provides details on the cost engine algorithm, focusing on the flow
of evaluation of the various types of CSL modules.

The following topics are covered here:

▪ Hierarchies

▪ Algorithm Overview

▪ Process Template Expansion and Pruning

▪ Material Stock Selection

▪ Feasibility and Machine Selection

▪ Operation Assignment

▪ Operation Costing

▪ Process Costing

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 158

Hierarchies
The cost engine algorithm employs a number of hierarchical (that is, tree structured)
data structures. The description of the cost engine algorithm in this chapter often refers
to visiting the nodes of a hierarchy or traversing a hierarchy. In order to understand the
description, it’s important to clearly identify and distinguish among the various types of
hierarchies:

▪ GCD hierarchy: generated by GCD extraction, and represented in the aPriori
interface in the Geometric Cost Drivers pane. The parent/child relation in this
hierarchy usually represents the spatial part-of relation. When the cost engine
considers a particular process routing (or process routing/material stock
combination), it descends the current part’s GCD hierarchy, choosing an
operation sequence for each GCD it visits along the way, and additionally
establishing the process-operation hierarchy (see below) by finding a parent
process or parent operation for each operation in the chosen sequence (see
Operation Assignment).

▪ Templates: defined by the cost model to provide a compact representation of a
variety of candidate process routings or operation sequences. Note that a
template is different from the routings or sequences that instantiate the template.
The cost engine traverses a template during expansion in order to generate
instantiations, evaluating template pruning modules along the way (see Process
Template Expansion and Pruning).

▪ Template instantiations: generated by template expansion. Each template
instantiation is particular process routing or operation sequence. The cost engine
performs a traversal of each candidate process routing in order to evaluate each
node’s optionality module; it also performs a traversal of each candidate process
routing in order to evaluate feasibility and select a machine for each node; and it
performs a traversal of each candidate process routing in order cost each
process (see Feasibility and Machine Selection and Process Costing). Similarly,
the cost engine performs traversals of operation sequences in order to assign
parents, evaluate feasibility, select tools, and perform operation costing (see
Operation Assignment and Process and Operation Taxonomy).

▪ Process-GCD-operation hierarchy: represented by the Processes, GCDs &
Operations tree in the CMWB navigation pane. This hierarchy determines each
operation’s associated GCD type, as well as each process and operation’s
potential or permissible children in the process-operation hierarchies—see
below. This hierarchy (together with the current process routing or parent
operation sequence) constrains the assignment of parents in the process-
operation hierarchies (see Operation Assignment).

▪ Process-operation hierarchies: generated during descent of the GCD hierarchy—
see GCD hierarchy, above. The parent/child relation in this hierarchy usually
represents the temporal part-of relation (that is, a child operation is a part of the
process or operation represented by the parent, where the child takes up only a
part of the time required for the parent procedure). When the cost engine
considers a particular process routing (or process routing/material stock
combination), before it evaluates the processes’ process taxonomy modules, it
costs the operations required to create the current part’s GCDs as part of these
processes. When the cost engine costs these operations, it ascends (using post-

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 159

order, depth first tree traversal) the process-operation hierarchies, evaluating
each operation taxonomy module along the way (see Process and Operation
Taxonomy).

Algorithm Overview
In very general terms, the cost engine algorithm costs a variety of alternative process
routings for a given part, and picks the one with the lowest cost. The candidate routings
are derived from process templates and template pruning CSL modules (see Process
Template Expansion and Pruning). For process groups that support material stocks, the
cost engine actually costs a variety of routing/ stock combinations, and picks the best
one. It derives the candidate stocks from the material stock selection CSL module (see
Material Stock Selection).

For each candidate process routing (or process routing/material stock combination), the
algorithm, broadly speaking, proceeds in four stages:

1 Feasibility and machine selection: Evaluates the routing’s feasibility. Eliminates the
routing from consideration if it is infeasible; otherwise, picks a machine for each
feasible node of the routing. See Feasibility and Machine Selection for details.

2 Operation assignment: Descends the GCD hierarchy, choosing an operation
sequence for each GCD, and additionally finding a parent process or parent
operation for each operation in the chosen sequence (thus establishing the process-
operation hierarchy), as well as finding a tool for each operation in the chosen
sequence that requires one. See Operation Assignment for details.

3 Operation costing: Ascends the process-operation hierarchy, evaluating the cost of
each operation along the way (possibly relying on the results of evaluating the cost of
descendent operations). See Process and Operation Taxonomy for details.

4 Process costing: Traverses the process routing, evaluating the cost of each process
along the way (possibly relying on the results of evaluating operation costs). The cost
engine then aggregates the costs across processes, yielding a fully-burdened, per-
part cost. See Process Costing for details.

Once each routing (or routing/stock combination) has been considered, the cost engine
selects the one with the lowest fully-burdened cost. If all candidate routing/stock
combinations have been eliminated from consideration, the part fails to cost.

Pseudo code for this high-level algorithm might take the following form:

Template Pruning

for each pruned, licensed process routing {

 Material Stock Selection

 for each selected material stock {

 Stage 1: Feasibility and Machine Selection

 Stage 2: Operation Assignment

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 160

 Stage 3: Operation Costing

 Stage 4: Process Costing

 }

}

Select Optimal Routing and Stock

Process Template Expansion and
Pruning
Once GCD extraction has been performed, the cost engine begins costing a part by
expanding the process-level templates associated with the current process group.
Expansion potentially produces every instantiation of the templates, that is, every
possible process routing for the process group. Each routing includes some, but not all,
nodes from a template.

During expansion, the cost engine visits each template node, and evaluates the node’s
associated template pruning module, if there is one. If a node’s template pruning module
returns false, the node is removed from the template. All the node’s descendents in the
template are removed as well. This can prevent the production of a large number
irrelevant routings.

A template pruning rule might, for example, eliminate all turning routings for parts that
have no valid turning axis.

Material Stock Selection
For process groups that use material stock, the complete list of available stocks (for the
current user-selected material) is presented in aPriori’s Material Selection dialog, when the
Material Stock pane is expanded. Based on the geometry of the current part, the cost
engine can narrow down the stocks it considers by evaluating a material stock selection
module.

If aPriori’s material stock mode is Auto rather than Manual, then for each process routing
that the cost engine considers, it checks the routing’s nodes for the presence of the node
attribute utilizationProcess.

▪ If there is exactly one node such that (1) the node has the utilizationProcess
attribute and (2) this attribute has a value, then the cost engine evaluates the
stock selection module associated with the node named by the attribute value.
(No stock selector is evaluated if the value does not name a node with a stock
selector.)

▪ If there is more than one node such that (1) it has the utilizationProcess attribute
and (2) this attribute has a value, then the cost engine evaluates the stock
selection module associated with the node named by the value of the left-most of
these nodes. (No stock selector is evaluated if the value does not name a node
with a stock selector.)

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 161

▪ Otherwise, if there is exactly one node that has the utilizationProcess attribute (but
the attribute has no value), the cost engine evaluates the stock selection module
associated with the node that has the attribute.

▪ Otherwise, if there is more than one node that has the utilizationProcess attribute
(but the attributes have no values), the cost engine evaluates the stock selection
module associated with the right-most active node that has the attribute.

For example, for the sheet metal process group, if a routing includes the branch node
Prog Die, which has a node attribute utilizationProcess whose value is Progressive

Die, the cost engine evaluates the stock selection module associated with Progressive

Die.

If the stock selection module establishes a collection of stocks as the value for the CSL
output validMaterialStocks, the cost engine considers each stock in the collection.

If the stock selection module does not establish a non-null value for the CSL output
validMaterialStocks, the cost engine considers only one, virtual stock, specified as

follows:

▪ For the Machining process group, virtual stock dimensions are determined by the
values of other CSL outputs for the stock selection module, the dimensions of the
current part, and plant variables, as follows:

o Length:

- CSL output virtualStockLength, if non-null.

- Otherwise, the larger of the current part’s minStockLength and the value of

the plant variable standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the current part’s minStockLength and 20 feet.

o Width:

- CSL output virtualStockWidth, if non-null.

- Otherwise, the width of the current part’s cross-section.

o Height:

- CSL output virtualStockHeight, if non-null.

- Otherwise, the height of the current part’s cross-section.

o Inside diameter:

- CSL output virtualStockInsideDiameter, if non-null.

- Otherwise, the inside diameter of the current part’s cross-section.

o Outside diameter:

- CSL output virtualStockOutsideDiameter, if non-null.

- Otherwise, the outside diameter of the current part’s cross-section.

o Thickness:

- CSL output virtualStockThickness, if non-null.

- Otherwise, the thickness of the current part’s cross-section.

▪ For the Sheet Metal process group, virtual stock dimensions are determined by
the values of other CSL outputs for the stock selection module, the dimensions of
the current part, and plant variables, as follows:

o Length:

- The larger of the blank’s length and the CSL output virtualStockLength, if

non-null.

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 162

- Otherwise, the larger of the blank’s length and the value of the plant variable
standardStockLength, if the plant variable is defined.

- Otherwise, the larger of the blank’s length and 8 feet.

o Width:

- The larger of the blank’s width and the CSL output virtualStockWidth, if

non-null.

- Otherwise, the larger of the blank’s width and the value of the plant variable
standardStockWidth, if the plant variable is defined.

- Otherwise, the larger of the blank’s width and 4 feet.

Feasibility and Machine Selection
In this stage, the cost engine evaluates various CSL modules associated with the nodes
of the current process routing:

1 First the cost engine visits each node in the routing, evaluating each node’s
optionality module, if there is one. If the module returns true, the cost engine makes
the node non-optional. If the module returns false, the cost engine removes the node
from the current routing.

2 Next the cost engine again visits each node in the current routing. For each node it
does the following:

o Evaluates the node’s feasibility module. The cost engine proceeds as follows:

- If the module returns false and the node is non-optional, the current routing
as a whole is deemed infeasible, and the cost engine moves on to
consideration of a new process routing.

- If the module returns false and the node is optional, the current node
(together with any descendants) is removed from the routing, and the cost
engine proceeds to the next node of the current routing, if there is one.

- If the module returns true or if there is no feasibility module, the cost engine
proceeds to machine selection.

o Attempts to select a machine for the current process (except when the node’s
selectMachineAfterOpAssignment attribute is non-null—see Process Costing)—
and except when a machine has already been selected for an ancestor of the
current node in the current routing). aPriori has four machine selection modes
(see the Edit Machine Selection dialog in aPriori):

- aP Select: The cost engine evaluates the node’s machine selection module,
putting into scope the CSL input machines, and establishing its value as a

collection with one machine for each line of the aPriori machine table (see the
Edit Machine Selection dialog in aPriori). If the machine selection module fails to
establish a non-null value for the CSL output machine, the current routing is

deemed infeasible, and the cost engine moves on to consideration of a new
process routing. Otherwise, the value of machine is assigned to the current

process.

- User Select/ if not feasible, fail to cost: The cost engine evaluates the node’s
machine selection module, putting into scope the CSL input machines, and

establishing its value as a collection whose only element is the user-selected
machine. If the machine selection module fails to establish a non-null value

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 163

for the CSL output machine, the current routing is deemed infeasible, and the

cost engine moves on to consideration of a new process routing. Otherwise,
the value of machine is assigned to the current process.

- User Select/ if not feasible, auto-select: The cost engine evaluates the node’s
machine selection module, putting into scope the CSL input machines, and

establishing its value as a collection whose only element is the user-selected
machine. If the machine selection module fails to establish a non-null value
for the CSL output machine, the cost engine proceeds as described for aP

Select, above. Otherwise, the user-selected machine is assigned to the
current process.

- User Select/do not check feasibility: The cost engine assigns the user-selected
machine to the current process.

In summary, this stage involves the evaluation of the following types of CSL modules:

▪ Process optionality

▪ Process feasibility

▪ Machine selection

These types of modules are evaluated in the context of a process routing (and possibly a
material stock) and a particular routing node, but operation sequences have not yet been
chosen, and no process has yet been costed. Throughout the evaluation of optionality
and feasibility modules, no machine has yet been selected. See Algorithm Overview.

Operation Assignment
In this stage, the cost engine visits each node in the current part’s GCD hierarchy,
attempting to assign it an operation sequence. For each GCD in the hierarchy, the cost
engine picks an operation sequence that is associated (via operation templates) with
that GCD’s type.

For each GCD, the cost engine expands its associated operation templates. It then
considers several alternative sequences if necessary, and selects the first one that is
successful in the following sense:

▪ All the operations in the sequence can be assigned a parent process or
operation.

▪ All the sequence’s non-optional operations are feasible and can be assigned a
tool (if appropriate)

▪ All children (if there are any) of the current GCD can successfully be assigned an
operation sequence in the sense described here.

Note that the cost engine does not compare the costs of different candidate operation
sequences as it does with candidate process routings; instead, it simply selects the first
sequence that is successful in the above sense.

If no successful sequence is found, the GCD fails to cost, and the cost engine issues a
warning to aPriori.

To make the assignments, the cost engine performs the following recursive procedure
on each child GCD of the current part’s component GCD:

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 164

Expand the associated operation templates, and for each resulting operation sequence,
do the following:

1 Parent assignment: Find an assignment of operations in the current sequence to
processes in the current process routing (or to operations in the sequence currently
assigned to the parent GCD of the current GCD) such that both the following hold:

o Each operation is an allowable child of its assigned process or operation (see
the navigation pane of the CMWB).

o If one operation is earlier in the sequence than another, the first operation is
assigned a parent that is the same or earlier than (in the process routing) the
parent assigned to the other operation.

If no such assignment is possible, the cost engine issues an error message to
the aPriori message tree, and moves on to the next operation sequence.

2 Feasibility and tool selection:

o For each node in the current operation sequence, evaluate the node’s
optionality module.

o For each node in the current operation sequence:

- Evaluate the node’s feasibility module. If the module returns false and the
node is non-optional, the current sequence as a whole is deemed infeasible,
and the cost engine moves on to consideration of a new operation sequence.
If the module returns false and the node is optional, the current node
(together with any descendents) is removed from the sequence, and the cost
engine proceeds to the next node of the current sequence, if there is one. If
the module returns true or if there is no feasibility module, the cost engine
proceeds to tool selection.

- Evaluate the node’s tool selection module. If the module fails to establish a
non-null value for the CSL output tool, the current sequence is deemed

infeasible, and the cost engine moves on to consideration of a new operation
sequence. Otherwise, the value of tool is assigned to the current operation.

3 Child GCD operation assignment: Perform these steps (1, 2, and 3) recursively for
the child GCDs (if there are any) of the current GCD. If the procedure succeeds, the
cost engine selects the current operation sequence for the current GCD. If the
procedure fails, the cost engine moves on to consideration of a new operation
sequence.

Pseudo code for the procedure performed on each GCD might take the following form:

boolean assignOperations(GCD) {

 Expand operation templates for GCD

 for each operation sequence associated with the GCD {

 Parent Assignment

 if parent assignment was unsuccessful

 continue (move on to the current GCD’s next

operation sequence)

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 165

 Feasibility and Tool Selection

 if feasibility and tool selection were unsuccessful

 continue (move on to the current GCD’s next

operation sequence)

 for each child GCD of GCD {

 success = assignOperations(child GCD) //

recursion

 if !success break;

 }

 if !success

 continue (move on to the current GCD’s next

operation sequence)

 else {

 assign the current sequence to the current GCD

 return true

 }

 }

 return false

}

For process groups that have templates with zero-or-more nodes (see Working with
Templates, there is an additional step immediately before feasibility and tool selection
(step 2, above, in this section). The cost engine evaluates a number of modules (such as
precedence and compatibility modules), if present, in order to expand these nodes into
zero or more individual operations.

This procedure is performed on the GCDs by performing up to four passes on the GCD
hierarchy. This allows cost models such as machining to select operation sequences
that minimize the number of different setup axes required to manufacture the current
part. Pseudo code for these passes might take the following form:

// pass 1: CSL input passNumber has value 1

foreach non-axisymmetric child gcd of component {

 assignOperations(gcd)

}

// pass 2: CSL input passNumber has value 2

foreach axisymmetric child gcd of component {

 assignOperations(gcd)

}

// pass 3: CSL input passNumber has value 3

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 166

foreach unassigned non-axisymmetric child gcd of component {

 assignOperations(gcd)

}

// pass 4: CSL input passNumber has value 4

foreach unassigned non-axisymmetric child gcd of component {

 assignOperations(gcd)

}

During each pass, some operations are treated as if they are infeasible, so their
consideration can deferred to a later pass:

▪ Pass 1: Only operation-sequence nodes with an ancestor whose value for the
node attribute assignOpsWithActivePrimaryAxesFirst is true are treated as

potentially feasible; all others are treated as infeasible.

▪ Pass 2: All hole-related and axigroove-related operations are treated as
potentially feasible; all others are treated as infeasible.

▪ Pass 3: All surface-related operations are treated as potentially feasible; all
others are treated as infeasible.

▪ Pass 4: Only nodes with an ancestor whose value for the node attribute
runInFourthCostingPass is true are treated as potentially feasible; all others

are treated as infeasible.

In addition, for all passes, operation feasibility modules can control which operations are
considered feasible in a given pass by including rules that refer to the CSL input
passNumber.

For passes 3 and 4, the GCDs are visited in order of descending size (based on the
areaFinished GCD attribute), if some node of the current process routing has value

true for the node attribute sortGcdsByFinishArea.

In summary, this stage involves evaluation of the following module types:

▪ Operation optionality

▪ Operation feasibility

▪ Tool selection

These types of modules are evaluated in the context of a process routing (and possibly a
material stock), an assignment of machines to processes in the current routing, and a
candidate operation sequence for the current GCD and all its ancestors. There are no
candidate operation sequences for descendents of the current GCD. During any given
evaluation, operation sequences for the current process routing have not yet been
finalized, and no process has yet been costed.

Operation Costing
In this stage, the cost engine traverses each process-operation hierarchy. It uses post-
order, depth first tree traversal, evaluating each operation’s taxonomy module. This
means, essentially, that costing proceeds in a bottom-up fashion, so that all the children
of a given operation are costed before that operation is costed. That way, an operation

Cost Engine Details CMWB User Guide

aPriori Version 2019 R2 167

taxonomy module can access the results of the modules associated with its children in
the process-operation hierarchy, in order, for example, to aggregate their cycle times.

Process Costing
Process costing proceeds in two passes: a right-to-left pass (the yield pass) and a left-
to-right pass.

In the first pass, the yield pass, the cost engine visits each node in the process routing.
For each node, the cost engine does the following:

▪ If the node’s selectMachineAfterOpAssignment attribute is non-null (and so machine
selection was not performed during Stage 1), the cost engine performs machine
selection as described in step 2 of Feasibility and Machine Selection.

▪ The cost engine evaluates only the following formulas (if present) in each node’s
process taxonomy module:

o finishMass

o stripNestingPitch

o roughLength

o numPartsPerSheet

o utilizationWithAddendum

o scrapMass

o roughMass

o utilizationWithoutAddendum

o utilization

o materialYield

o goodPartYield

This pass proceeds right to left; that is, nodes later in the routing are visited first.

In the second pass, the cost engine again visits each node in the process routing, and
evaluates the rest of the formulas in each node’s process taxonomy module. This pass
proceeds left to right.

Once all processes taxonomy modules have been fully evaluated, the cost engine
evaluates the Site Cost Model taxonomy module, which typically aggregates the results
of the individual process taxonomy modules, producing the fully-burdened, per-part cost
as well as the aggregate costs presented in aPriori’s Cost Summary tab.

For process groups that have templates with zero-or-more nodes, there is an additional
step immediately before the yield pass. The cost engine evaluates special modules, if
present, in order to expand these nodes into zero or more individual operations.

aPriori Version 2019 R2 168

5 Cost Scripting
Language Reference

This chapter provides a reference on aPrioi’s Cost Scripting Language (CSL).
The code in a CSL module specifies the rules and formulas that make up a
particular portion of a cost model (such as the portion that computes a cost
taxonomy for a particular process). So experienced users can employ CSL to
implement and customize the details of cost model logic. For more information on
working with cost model logic, see also Working with Cost Model Logic. For
information on working with cost model data, see Working with Cost Model Data
and Metadata.

This chapter includes the following topics:

▪ Overview

▪ Modules, Inputs, and Outputs

▪ Imports

▪ Formulas and Rules

▪ Expressions

▪ Identifiers and Literals

▪ Comments and Line Continuation

▪ Predefined Functions

▪

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 169

Overview
The high-level logic of any cost model is specified by the cost engine algorithm (see
Cost Engine Details). This part-costing algorithm specifies the flow of evaluation of the
various types of CSL modules. For example, it specifies that each process’s machine
selection module is evaluated only if its feasibility module evaluates to true. The code in

a CSL module specifies the rules and formulas that make up a particular portion of a
cost model, such as the portion that evaluates the feasibility of a particular process, or
selects a machine for a process, or computes a process’s cost taxonomy.

Module Types

The various types of CSL modules can be divided into three categories:

▪ Taxonomy modules calculate those outputs, such as cycleTime and laborCost,

that are specified by the module’s associated formula table in the CMWB.

▪ Selection modules establish values for special outputs associated with their
module types, for example, machine for machine selection modules and tool for

tool selection modules.

▪ Modules that return a boolean value, such as feasibility modules, consist
primarily of rules. They generally return true if all the rules succeed; they return

false if any rule fails.

Taxonomy modules include the following module types:

▪ Process taxonomy: evaluated for each feasible process in the context of a
particular stock selection, process routing, and machine selection. A routing’s
process taxonomy modules are evaluated after costing of all the routing’s
descendent operations. Process taxonomy modules calculate various physical
quantities, durations, and monetary quantities in order to generate a complete
cost taxonomy for the current part and process.

▪ Operation taxonomy: evaluated (if present) for each feasible operation in the
context of a particular stock selection, process routing, machine selection, GCD,
operation sequence, and tool selection. An operation’s taxonomy module is
evaluated after costing of all the operation’s descendant operations. Operation
taxonomy modules calculate various physical quantities, durations, and monetary
quantities in order to generate a complete cost taxonomy for the current GCD
and operation.

Selection modules include the following module types:

▪ Material stock selection: evaluated for each pruned, process-level routing. This
module (if present for some process in the current routing) narrows down the
candidate material stocks.

▪ Machine selection: evaluated (if present) for each feasible process in the context
of a particular stock selection and process routing. This module selects a
machine for the current process.

▪ Tool selection: evaluated (if present) for each operation in the context of a
particular stock selection, process routing, machine selection, GCD, and
operation sequence. This module selects a tool for the current operation.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 170

Modules that return a value include, among others, the following module types:

▪ Process feasibility: evaluated (if present) for each process in the context of a
particular stock selection and process routing. If the module returns true, the
process is considered feasible, and the cost engine proceeds to machine
selection; if the module returns false, the current process routing is abandoned
(unless the process is optional, in which case it is removed from the current
process routing).

▪ Operation feasibility: evaluated (if present) for each operation in the context of a
particular stock selection, process routing, machine selection, GCD, and
operation sequence. If the module returns true, the operation is considered
feasible, and the cost engine proceeds to tool selection; if the module returns
false, the current operation sequence is abandoned (unless the operation is
optional, in which case it is removed from the current operation sequence).

▪ Template pruning: evaluated (if present) during the initial expansion of the
process-level templates. If the module returns true, the current node is included
in the current routing; if the module returns false, the node is removed from the
current routing.

▪ Process optionality: evaluated (if present) for each process in the context of a
particular stock selection and process routing. If the module returns true, the
current process is included in the current routing; if the module returns false, the
process is removed from the current routing.

▪ Operation optionality: evaluated (if present) for each operation in the context of a
particular stock selection, process routing, machine selection, GCD, and
operation sequence. If the module returns true, the current operation is included
in the current sequence; if the module returns false, the operation is removed
from the current sequence.

See Cost Engine Details for detailed information on the flow of evaluation of the various
types of CSL modules.

Module Contents

Each CSL module contains the following kinds of top-level syntactic elements:

▪ Import directives effectively include the text of a specified file in the current CSL
file. See Imports for more information.

▪ Formulas are essentially named expressions. When a formula is evaluated, the
expression is evaluated, and the result is established as the value of the name.
The expression can evaluate to a number, string, boolean, collection, or object.
See Formulas for more information.

▪ Rules are essentially named or unnamed boolean expressions. When a rule is
evaluated, the expression is evaluated, and the rule returns the result. For a
named rule, if the result is false, the message with a matching name is
evaluated. See Rules for more information.

▪ Messages are essentially named strings. When a rule with a matching name
fails, the string is appended to the cost engine log. See Messages for more
information.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 171

▪ Function definitions are essentially parameterized formulas. Function invocation
expressions specify actual parameters for the definition’s formal parameters. See
Function Definitions for more information.

▪ Set blocks are sequences of formulas enclosed in braces. A formula that is not
within a set block is evaluated only if either it is an output formula or its
evaluation is required (directly or indirectly) for the evaluation of an output
formula (see Outputs). A formula that is within a set block is always evaluated as
part of the evaluation of the module that contains it.. Set blocks are typically used
to pass information to other modules by setting fields of input objects. See Set

Blocks for more information.

See Modules, Inputs, and Outputs for information on the syntactic structure of CSL
modules.

Values and Expressions

CSL supports the following types of values

▪ Arithmetic: can be designated by expressions (see below), numeric literals such
as 50 or 21.75, or identifiers such as roughMass or machine.cycleTime. See

Numerical Literals for more information about arithmetic values.

▪ String: can be designated by expressions (see below), string literals, such as
‘Material Cost’, or identifiers such as op.name. See String Literals for more

information about strings.

▪ Boolean: can be designated by expressions (see below), the boolean literals
true and false, or identifiers such as op.isManualOverride.

▪ Object: can be designated by expressions (see below) or identifiers such as
part, gcd, or machine. Each object has one or more named fields which you can

access using dot notation, as in part.volume or part.material. The value of a

field can be any type of CSL-supported value, including a collection or other
object.

▪ Collection: can be designated by expressions (see below) or identifiers such as
childOps or tubLaserCutting. Note that a cost model’s lookup tables are

collections; each collection element is a table row, and each collection-element
field corresponds to a table column. You can retrieve a collection’s elements by
using query or foreach expressions.

See Identifiers and Literals for information on CSL literals and identifiers.

CSL supports the following kinds of expressions:

▪ Arithmetic: can be formed using binary and unary arithmetic operators, such as *

and -. See Arithmetic Expressions for more information.

▪ String: can be formed using the string concatenation operator +. See String

Expressions for more information.

▪ Boolean: can be formed using unary and binary logical operators such && and ~,

as well as binary arithmetic comparison operators such as == and <=. See

Boolean Expressions for more information.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 172

▪ Conditional: evaluates to one of several alternative values, depending on the
value of boolean expressions associated with the alternative values. See
Conditional Expressions for more information.

▪ Function invocation: evaluates to the result of substituting the invocation’s actual
parameters for the formal parameters in the corresponding function definition.
See Function Invocations for more information.

▪ Query: retrieves or aggregates collection elements or values. These expressions
have essentially the same semantics as SQL queries. See Query Expressions for
more information.

▪ Foreach: evaluates to the result of applying a formula to each collection element
in turn. See Foreach Expressions for more information.

In general, a type mismatch (for example, using a string as an operand of a boolean
operator) causes an exception (that is, runtime error) in CSL. In some cases, the cost
engine converts an arithmetic value to a string in order to resolve a mismatch. Similarly,
true and false are converted to 1 and 0 (respectively) in some cases.

Modules, Inputs, and Outputs
Every CSL module has an associated set of input identifiers and an associated set of
output identifiers. Some CSL modules return a boolean value. When the cost engine
evaluates a CSL module, it does the following:

▪ Establishes values for all the input identifiers. See Inputs for detailed information
on inputs.

▪ Imports any explicitly specified import modules, as well as certain CSL modules
global to the current process group. See Imports for information on imports.

▪ Evaluates the module’s rules and formulas. The flow of evaluation depends on
the module’s type (see below). Formula evaluation establishes values for output
identifiers. See Outputs for detailed information on outputs. Rule evaluation
returns boolean values, and can cause the module to return a boolean. See
Return Values for more information on return values.

▪ Evaluates each formula in a set block. See Set Blocks for information on set
blocks.

The following summarizes the flow of evaluation for formulas and rules:

▪ For taxonomy and selection modules, the cost engine generally evaluates all the
output formulas, that is, formulas whose left hand side is an output identifier. This
establishes values for the output identifiers. Other formulas and rules are
evaluated only if required for the evaluation of some output formula. See
Formulas for more information on formula evaluation.

▪ For modules that return true or false, rules are evaluated in the order in which
they appear in the module. If a rule fails, rule evaluation terminates, and module
evaluation returns false; if all the rules succeed, module evaluation returns

true. Formulas are evaluated when required for rule evaluation. For feasibility

modules, after rule evaluation terminates and before the module returns a value,
the cost engine evaluates output formulas, if there are any. See Rules for more
information on rules.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 173

Note that an instance of any of these syntactic categories can span lines only through
the use of line continuations (with certain exceptions)—see Comments and Line
Continuation. Note also that CSL supports comments. See Comments and Line
Continuation for more information.

Syntax

Each CSL module has the following syntax:

[<import-directive>*]

{<formula> | <rule> | <message> | <function-definition> | <set-block>}[

{<formula> | <rule> | <message> | <function-definition> | <set-

block>}]*

See Imports and Formulas and Rules for information on each syntactic category
mentioned above:

Inputs

Input values include data derived from the current VPE and the current part. Input values
also sometimes include certain outputs of other CSL modules. When the cost engine
evaluates a module, it puts into scope each input identifier, that is, it establishes values
for the module’s input identifiers.

Note that you can view input identifiers and their values by setting a breakpoint in the
CSL debugger. Click the Inputs/Formula Results tab when the debugger stops at a
breakpoint. See Using the CSL Debugger in Working with Cost Model Logic for
information on setting a breakpoint.

Note also that you can test whether an identifier is in scope with the predefined function
safeEval--see Miscellaneous Functions. Other uses of an identifier that is not in scope

cause an exception.

The input identifiers listed below are associated with every type of CSL module, unless
otherwise specified.

Accessibility

The value of this identifier is an enumeration object with the following fields:

▪ OBSCURED

▪ SIDE_A

▪ SIDE_B

▪ THROUGH

▪ UNDERCUT

▪ UNKNOWN

allOps

The value of this identifier is a collection that has one element for each already-costed
operation of the current routing. Each element is an object that has one field for each
already-evaluated output formula of a module associated with the operation, as well as
one field for each attribute of the operation’s associated GCD.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 174

You can view a list of these formulas and attributes as follows:

▪ Formula names:

o In CMWB, select the operation or process and click the CSL Modules tab.

o See Outputs for information on standard, implicit output formulas for each
CSL module type.

▪ GCD attributes: in aPriori, select a GCD in the Geometric Cost Drivers pane. The
gcd object field names are the same as the names displayed in the Name column

of the Geometric Cost Drivers pane, modified to remove spaces and to make the
initial character lower case.

Each element of allOps also has the following fields:

▪ childOps: collection with an element for each already-costed child operation of

the child operation. This allows recursive access to descendants of the current
process or operation.

▪ displayName: name of the operation as translated into the local language.

▪ ignoreFeasibility: true if the current routing node was explicitly specified by

the user to be included in the current routing regardless of feasibility; false

otherwise.

▪ isManualOverride: true if the current routing node was explicitly selected by

the user to be included in the current routing; the value is false otherwise.

allOps is in scope for all types of CSL modules, except the following:

▪ Operation precedence

▪ Operation type precedence

▪ Compatibility

▪ Idle station count

BarShape

The value of this identifier is an enumeration object with the following fields:

▪ ROUND_BAR

▪ SQUARE_BAR

▪ RECTANGULAR_BAR

▪ ROUND_TUBE

▪ SQUARE_TUBE

▪ RECTANGULAR_TUBE

▪ CHANNEL_BAR

▪ ANGLE_BAR

▪ HEX_BAR

▪ I_BEAM

▪ UNKNOWN

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 175

childOps

The value of this identifier is a collection that has one element for each already-costed
child operation of the current process or operation. Each element is an object that has
one field for each output formula of a module associated with the operation, as well as
one field for each attribute of the operation’s associated GCD.

You can view a list of these formulas and attributes as follows:

▪ Formula names:

o In CMWB, select the operation or process and click the CSL Modules tab.

o See Outputs for information on standard, implicit output formulas for each
CSL module type.

▪ GCD attributes: in aPriori, select a GCD in the Geometric Cost Drivers pane. The
gcd object field names are the same as the names displayed in the Name column

of the Geometric Cost Drivers pane, modified to remove spaces and to make the
initial character lower case.

Each element of childOps also has the following fields:

▪ childOps: collection with an element for each already-costed child operation of

the child operation. This allows recursive access to descendants of the current
process or operation.

▪ displayName: name of the operation as translated into the local language.

▪ ignoreFeasibility: true if the current routing node was explicitly specified by

the user to be included in the current routing regardless of feasibility; false

otherwise.

▪ isManualOverride: true if the current routing node was explicitly selected by

the user to be included in the current routing; the value is false otherwise.

▪ name: name of the operation as specified in the associated template.

childOps is in scope for all types of CSL modules, except the following:

▪ Operation precedence

▪ Operation type precedence

▪ Compatibility

▪ Idle station count

childResults

The value of this identifier is a collection with one element for each child process node of
the current node. Each child node’s associated object has one field for each already-
evaluated output formula of the child node. Other fields include the following:

▪ name

▪ simpleName

ComplexHoleSubType

The value of this identifier is an enumeration object with the following fields:

▪ RECTANGULAR_ROUNDED

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 176

▪ OBROUND

▪ RECTANGULAR

▪ UNKNOWN

constants

The value of this identifier is an object that has one field for each CSL predefined
constant for the current process group. To view a complete list of predefined constants,
click Globally Available CSL/Lookup Tables under Global Cost Model Information in the
navigation pane of the CMWB, select the Modules tab, and click the constants folder.

defaultMachine

The value of this identifier is an object that represent the default machine for the current
process. It has one field for each attribute of the default machine. You can view machine
attributes for a given process in the Edit Machine Selection dialog (right click a process
name in aPriori’s Manufacturing Process pane, and select Machine Selection). Note that this
is in scope only if there is a current process; is not in scope for template pruning or
material stock selection.

Direction

The value of this identifier is an enumeration object with the following fields:

▪ UP

▪ DOWN

▪ BOTH

▪ EITHER

▪ UNKNOWN

EdgeShape

The value of this identifier is an enumeration object with the following fields:

▪ CHAMFER

▪ ROUND

▪ SHARP

▪ UNKNOWN

FormType

The value of this identifier is an enumeration object with the following fields:

▪ TAB

▪ BRIDGE

▪ EMBOSS

▪ STAMP

▪ GUSSET

▪ CURVED_BEND

▪ SIDE_ACTION

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 177

▪ EXPANSION

▪ REDUCTION

▪ UNKNOWN

gcd

This is an object that has one field for each attribute of the current GCD. The field names
and values are the same as the attribute names and values. You can view a list of these
attributes as follows: in aPriori, select a GCD in the Geometric Cost Drivers pane. The gcd

object field names are the same as the names displayed in the Name column of the
Geometric Cost Drivers pane, modified to remove spaces and to make the initial character
lower case. Note that for the name, attribute-name, of any GCD attribute, the value of

gcd.<attribute-name> is the same as the value of op.<attribute-name>.

global

The value of this identifier is an object that is used to pass information among different
CSL modules. You can add a field to global by using a formula (within a set block)

whose left hand side is a complex identifier consisting of “global” followed by dot

followed a new field name. See Set Blocks for information on set blocks.

Use this identifier to pass information from one process or operation to a sibling process
or operation in the current routing or operation sequence, during process or operation
taxonomy evaluation. It is set to null after each taxonomy evaluation pass (including after
the yield pass).

HoleType

The value of this identifier is an enumeration object with the following fields:

▪ BLIND

▪ THROUGH

▪ OBSCURED

▪ UNKNOWN

InclusionStatus

The value of this identifier is an enumeration object with the following fields:

▪ AUTO_INCLUDE

▪ USER_INCLUDE

One of these is the value of the inclusionStatus property of any active node in the

current process routing or operation sequence. The value indicates whether the node
has been manually or automatically included in the routing or sequence. If the node is
not active in the routing (for example, if it is optional and infeasible), the value of the
inclusionStatus property is null.

KeywayBottomType

The value of this identifier is an enumeration object with the following fields:

▪ FLAT

▪ ARC

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 178

▪ BATHTUB

▪ UNKNOWN

KeywayEndType

The value of this identifier is an enumeration object with the following fields:

▪ THROUGH

▪ OPEN

▪ CLOSED

▪ UNKNOWN

material

The value of this identifier is an object that has one field for each attribute of the current
material. You can view material attributes for the current process group in the Material
Composition table of the Material Selection dialog (click the Material button in aPriori’s
Manufacturing Process pane) .

machine

The value of this identifier is an object that has one field for each attribute of the current
machine. You can view machine attributes for a given process in the Edit Machine
Selection dialog (right click a process name in aPriori’s Manufacturing Process pane, and
select Machine Selection). Note that this is in scope only if a machine has been selected
for the current process.

machines

The value of this identifier is a collection that has one element for each machine
available for the current process. You can view available machines for a given process
in the Edit Machine Selection dialog (right click a process name in aPriori’s Manufacturing
Process pane, and select Machine Selection). Note that this is in scope only for machine
selection modules.

Lookup table identifiers

There is one identifier for each lookup table associated with current process group, and ,
if the current node is a process node, each lookup table associated with the current node
and all its ancestors up to and including the current process. Each identifier is the short
name (not pathname) of a table. The value of each identifier is a table accessible
through the use of a query expression. all the lookup tables associated with the process
group, the current node and all its parents in the process-tree hierarchy. (So, if the
current node is an operation, the parent process's lookup tables won't be available, but
parent nodes in the operation sequence will be.)

op

This is an object that has one field for each already-evaluated output formula of a
module associated with the current routing node, as well as one field for each attribute of
the current GCD. The field names and values are the same as the formula and attribute
names and values.

You can view a list of these formulas and attributes as follows:

▪ Formula names:

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 179

o In CMWB, select the operation or process corresponding to the current
routing node and click the CSL Modules tab.

o See Outputs for information on standard, implicit output formulas for each
CSL module type.

▪ GCD attributes: in aPriori, select a GCD in the Geometric Cost Drivers pane. The
gcd object field names are the same as the names displayed in the Name column

of the Geometric Cost Drivers pane, modified to remove spaces and to make the
initial character lower case.

Other fields of op include the following:

▪ childOps: collection with an element for each already-costed child operation of

the child operation. This allows recursive access to descendants of the current
process or operation.

▪ displayName: name of the operation as translated into the local language.

▪ ignoreFeasibility: true if the current routing node was explicitly specified by

the user to be included in the current routing regardless of feasibility; false

otherwise.

▪ isManualOverride: true if the current routing node was explicitly selected by

the user to be included in the current routing; the value is false otherwise.

▪ inclusionStatus: indicates whether the current node is user-included or auto-

included in the current process routing or operation sequence. See
InclusionStatus for possible values of this field.

part

The value of this identifier is an object with one field for each attribute of the current part,
including GCDs and production information.

This identifier is commonly used to access the current part's geometric properties, as in,
for example, part.height and part.volume. A collection of the current part's GCDs is

designated by part.childArtificats.

A property path of the following form allows access to the count of given GCD-type for
the current part:

part.componentProcessGroup.gcdSummary.gcdStatistics.data.<GCD-

type>.count

So, for example, the following expression can be used to retrieve the count of
SimpleHoles for the current part:

safeEval(part.componentProcessGroup.gcdSummary.gcdStatistics.data.Simpl

eHole.count, 0)

The structure of the property path can be seen in the Inputs/Formula Results tab of the
Cost Model Workbench Debugger:

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 180

The part object also has a field, customAttribute, which designates an object that has

a field for each user-defined attribute (UDA). So the form for accessing UDAs in CSL is

part.customAttributes.<UDA-name>

where UDA-name is the name that appears in the Name column of the System Admin
UDA table.

PartingType

The value of this identifier is an enumeration object with the following fields:

▪ FLAT

▪ NON-FLAT

▪ UNKNOWN

passNumber

The value of this identifier is the current pass number, 1, 2, 3, or 4, if the current node is
an operation node or operation sequence branch node. See Cost Engine Details for
more information on pass numbers.

perCosting

The value of this identifier is an object that is used to pass information among different
CSL modules. You can add a field to perCosting by using a formula (within a set block)

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 181

whose left hand side is a complex identifier consisting of “perCosting” followed by dot

followed a new field name. See Set Blocks for information on set blocks.

This identifier is set to null after every complete costing. Use this object for expensive
computations that won't vary by routing. Caution: in some cases, the GCD hierarchy
itself can vary by routing (for example, when aPriori creates RingedHoles for turning
routings).

perRouting

The value of this identifier is an object that is used to pass information among different
CSL modules. You can add a field to perRouting by using a formula (within a set block)

whose left hand side is a complex identifier consisting of “perRouting” followed by dot

followed a new field name. See Set Blocks for information on set blocks.

This identifier is set to null after each routing evaluation. Note that there are potentially
multiple evaluations of each routing—one for each stock.

plant

This is an object that has one field for each plant variable of the current VPE and
process group. The field name is the same as the name of the corresponding variable;
the field value is the value of the corresponding variable. You can view a list of these
variables (and their values) as follows:

▪ Global plant variables: In VPE Manager, open the current VPE and select the
top-level node in the navigation pane. The plant object field names are the

same as the names displayed in the VPE Manager, modified to remove spaces
and to make the initial character lower case.

▪ Process-group-specific plant variables: In CMWB, select Global Cost Model
Information > Cost Model Variables.

RelationType

The value of this identifier is an enumeration object with the following fields:

▪ LIES_NEAR

▪ LIES_OUTSIDE

▪ INTERSECTS

▪ PARALLEL

▪ ENDS_ON

▪ COAXIAL

▪ ADJACENT

▪ LIES_ON

▪ IS_ABOUT

▪ IS_ORTHOGONAL

▪ IS_ACCESSIBLE_FROM

results

This is a collection with one object for each number-valued output identifier associated
with the current process or operation or any of its child processes or operations. If there

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 182

are multiple children that define an output with the same name, the corresponding field
of results is the sum of the output values. All currency values are converted to the

current VPE’s currency. results is in scope for taxonomy modules only.

setup

The value of this identifier is an object with one field for each process setup option
associated with the current process. The field names are the option names. You can
view the process setup options for a given process as follows:

o Double click the process under Processes, GCDs & Operations in the CMWB
navigation pane.

o Click the Process Setup Options tab.

SetupDirectionType

The value of this identifier is an enumeration object with the following fields:

▪ NORMAL

▪ PARALLEL

▪ OBLIQUE

▪ PARALLEL_OBSTRUCTED

▪ NORMAL_OBSTRUCTED

▪ OBLIQUE_OBSTRUCTED

▪ UNKNOWN

SetupType

The value of this identifier is an enumeration object with the following fields:

▪ PRIMARY

▪ SECONDARY

▪ PRIMARY_ROTATIONAL

▪ SECONDARY_ROTATIONAL

▪ OTHER

site

The value of this identifier is an object that has one field for each site variable of the
current process group. The field names and values are the same as the variable names
and values. You can view a list of these attributes (and their values) by selecting Process
Group Site Variables from the aPriori VPE Toolset.

stock

The value of this identifier is an object with one field for each attribute of the current
material stock. Note: this is only in scope for modules associated with primary processes
and operations; it is not available for secondary processes and operations. Note that this
is in scope only if the stock selection module has been evaluated for the current part.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 183

tool

The value of this identifier is an object that represents the tool chosen for the current
node. Note that this is in scope only for modules associated with an operation, and is
non-null only if a tool has been selected for the current operation.

tools

The value of this identifier is a collection with one element for each tool available for the
current operation. Note that this is in scope only for tool selection modules.

toolShop

The value of this identifier is an object with one field for each variable of the toolshop
that is associated directly with either the current node, one of the current node’s parent
nodes, or one of the current node’s descendant nodes (if exactly one descendant node
has a tool shop).

TurningApproach

The value of this identifier is an enumeration object with the following fields:

▪ OD

▪ FACE_A

▪ FACE_B

▪ EITHER_FACE

▪ ID

▪ SLANTED

▪ NONE

VoidShape

The value of this identifier is an enumeration object with the following fields:

▪ EXTRUDED

▪ COMPLEX

▪ UNKNOWN

Outputs

The cost engine, by evaluating a CSL module, establishes values for all the CSL
module’s associated output identifiers. The output values established in the course of
costing a part become available to other CSL modules during the costing process, as
well as to the aPriori GUI when costing is complete.

What counts as an output identifier for a given module depends on the module’s type.
CSL supports the following module types:

▪ Process taxonomy

▪ Operation taxonomy

▪ Process feasibility (routing rules)

▪ Operation feasibility (routing rules)

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 184

▪ Material stock selection

▪ Machine selection

▪ Tool selection

▪ Template pruning

▪ Process optionality

▪ Operation optionality

▪ Operation Precedence

▪ Operation Type Precedence

▪ Operation compatibility

▪ Zero or More Operation

▪ Idle Station Count

▪ Form merge rules

▪ Bend merge rules

▪ Shear form merge rules

An output formula is a formula whose left hand side is an output identifier. It specifies the
value of one output (by assigning a value to the identifier). If and when the formula is
evaluated, the assignment is made. See Formulas for information on formula evaluation.

Taxonomy Modules

Process and operation taxonomy modules include the following output identifiers:

▪ Formula names listed in the module’s formula table on the CSL Modules tab of the
module’s associated process, operation, or template node in the CMWB.

▪ Formula names listed in the costTaxonomy formula table on the CSL Modules tab of
the module’s associated process group (select Globally Available CSL/Lookup
Tables).

Feasibility Modules

Process and operation feasibility modules, in addition to returning a boolean, include as
output identifiers all formula names listed in the module’s formula table on the CSL
Modules tab of the module’s associated process, operation, or template node in the
CMWB. By default there are none, but users can specify custom outputs.

Stock Selection Modules

Stock selection modules include the following output identifiers:

▪ validMaterialStocks

▪ sortedMaterialStocks

▪ bestMaterialStock

▪ Formula names listed in the module’s formula table on the CSL Modules tab of the
module’s associated process node in the CMWB. By default there are none, but
users can specify custom outputs.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 185

Stock selection modules can also have contingent output formulas, that is, formulas that
are treated as output formulas when a related formula evaluates to a specified boundary
value.

For the machining process group, the following are treated as output formulas when
validMaterialStocks evaluates to null or an empty collection:

▪ virtualStockLength

▪ virtualStockWidth

For the sheet metal process group, the following are treated as output formulas when
validMaterialStocks evaluates to null or an empty collection:

▪ virtualStockLength

▪ virtualStockWidth

▪ virtualStockHeight

▪ virtualStockThickness

▪ virtualStockInsideDiameter

▪ virtualStockOuterDiameter

Machine Selection Modules

Machine selection modules include the following output identifiers:

▪ machine

▪ Formula names listed in the module’s formula table on the CSL Modules tab of the
module’s associated process node in the CMWB. By default there are none, but
users can specify custom outputs.

Tool Selection Modules

Tool selection modules always include tool as an output identifier.

Tool selection modules have as contingent output formulas the formulas listed in the
module’s formula table on the CSL Modules tab of the module’s associated process,
operation, or template node in the CMWB (by default there are none, but users can
specify custom outputs). When tool evaluates to a non-null value, the formula names in

this table are treated as output identifiers.

Template Pruning Modules

Template pruning modules have no associated output formulas; they simply return a
boolean.

Optionality Modules

Optionality modules have no associated output formulas; they simply return a boolean.

Return Values

The code in a CSL module specifies a return value by using rules. Each rule, upon
evaluation, either succeeds or fails. If a rule fails, rule evaluation terminates and the
value false is returned. When all the rules in a module succeed, the value true is returned.
The returned value is used to help determine process and operation routing—see

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 186

Working with Cost Model Logic for more information on how return values help
determine routing.

Only the following types of CSL modules return a value:

▪ Process feasibility

▪ Operation feasibility

▪ Template pruning

▪ Process optionality

▪ Operation optionality

▪ Operation Precedence

▪ Operation Type Precedence

▪ Operation compatibility

▪ Form merge rules

▪ Bend merge rules

▪ Shear form merge rules

Imports
An import directive consists of the import keyword followed by a file name. When the
cost engine processes an import directive, it effectively includes the text of the specified
file in the current CSL module, for the purposes of the current module evaluation.

When the cost engine evaluates a CSL module, it first performs imports by doing the
following:

▪ Importing the constants.csl for the current process group, if it exists. You can

access this file as follows: Double click Globally Available CSL/Lookup Tables under
Global Cost Model Information in the navigation pane of the CMWB, select the CSL

Modules tab, and click the constants folder.

▪ Importing the file specified by each import directive in the current module.

For taxonomy modules, the cost engine also imports formula names listed in the
costTaxonomy formula table on the CSL Modules tab of the module’s associated process
group (click Globally Available CSL/Lookup Tables).

Each import statement has the following form:

import <simple-identifier>.csl

simple-identifer is the short name (not pathname) of the file to be imported. Each

import directive ends with a line break.

The file must be declared as a library file in the cost model. To view declared library files
for a given cost model, Globally Available CSL/Lookup Tables under Global Cost Model
Information in the navigation pane of the CMWB, and select the Library CSL tab.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 187

Formulas and Rules
The primary syntactic constructs in CSL are formulas and rules, and advice rules.

CSL supports parameterized formulas in the form of function definitions. Formulas can
also be enclosed in set blocks, to ensure their evaluation even if they are not output
formulas.

In addition, each rule can have an associated message and associated advice which are
evaluated if the rule returns false. Each advice rule can also have associated advice,
which is evaluated if the advice rule returns true.

This section covers the following constructs:

▪ Formulas

▪ Set Blocks

▪ Rules

▪ Messages

▪ Advice

▪ Advice Rules

▪ Function Definitions

Formulas

Each formula has the following form:

identifier = expression

A formula consists of an identifier (the formula name, also referred to as the left-hand
side) followed by “=” followed by an expression (referred to as the formula’s expression
or the right hand side). Each formula ends with a line break.

When the cost engine evaluates a formula, it does the following:

▪ Evaluates the formula’s expression. (See Expressions for information on
expression evaluation.)

▪ Assigns the result of the expression evaluation to the formula’s identifier.

The cost engine, in the course of evaluating a formula’s expression, sometimes
evaluates other formulas. In particular, if the expression contains an identifier that is not
one of the current module’s input identifiers, the cost engine determines the identifier’s
value by evaluating the rule or formula (in the current module) that has this identifier as
its name.

When the cost engine evaluates a module, it evaluates the following formulas:

▪ All the module’s output formulas, that is, all formulas whose left-hand side is an
output identifier

▪ All formulas in the module’s set blocks

▪ All the module’s formulas whose left-hand side appears as an identifier in an
expression that the cost engine evaluates.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 188

The cost engine evaluates only these formulas. Some formulas in a module might not be
evaluated.

 (The cost engine caches the results of formula evaluation, so that it typically evaluates
each formula at most once during evaluation of a given module.)

See the following sections for information on each syntactic category mentioned above:

▪ Identifiers and Literals

▪ Expressions

▪ Set Blocks

Set Blocks
Each set block has the following form:

set {

 <formula> [

 <formula>]*

}

A set block consists of the keyword “set” followed by a sequence of formulas enclosed

in braces.

A formula that is not within a set block is evaluated only if either it is an output formula or
its evaluation is required (directly or indirectly) for the evaluation of an output formula
(see Formulas and Outputs). A formula that is within a set block is always evaluated as
part of the evaluation of the module that contains it. The formulas in a set block are
evaluated only after evaluation of all output formulas that are not contained in a set
block.

Set blocks are typically used to pass information to other modules by setting fields of
input objects. The following input objects are particularly useful for this purpose:

▪ global: use this identifier to pass information from one process or operation to a
sibling process or operation in the current routing or operation sequence, during
process or operation taxonomy evaluation. It is set to null after each taxonomy
evaluation pass (including after the yield pass).

▪ perCosting: this identifier is set to null after every complete costing. Use this
object for expensive computations that won't vary by routing. Caution: in some
cases, the GCD hierarchy itself can vary by routing (for example, when aPriori
creates RingedHoles for turning routings).

▪ perRouting: This identifier is set to null after each routing evaluation. Note that
there are potentially multiple evaluations of each routing—one for each stock.

Each of these inputs allows you to introduce new fields. For example, you can introduce
new fields of global by using a formula whose left hand side is a complex identifier

consisting of “global” followed by dot followed a new field name. See Inputs for

information on input objects.

Example

set {

global.numScrapPartsDownStream = {

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 189

numScrapParts if safeEval(global.numScrapPartsDownStream, null)

== null

numScrapParts + global.numScrapPartsDownStream otherwise

}

}

Example

set {

 global.foo = 5

 part.bar = ‘baz’

}

Rules

A rule has the following form:

{<boolean-expression> | Rule <simple-identifier> : <boolean-

expression>}

Each rule is either named or unnamed. A named rule consists of a simple identifier (the
rule’s name) and a boolean expression. An unnamed rule consists only of a boolean
expression. Each rule ends with a line break.

When the cost engine evaluates a rule, it evaluates the boolean expression (see
Boolean Expressions for information on boolean expression evaluation). For a named
rule, the cost engine assigns the value (true or false) of the boolean expression to the
rule’s name.

The cost engine, in the course of evaluating a rule’s conditional expression, sometimes
evaluates formulas. In particular, if the expression contains an identifier that is not one of
the current module’s input identifiers, the cost engine determines the identifier’s value by
evaluating the formula (in the current module) that has this identifier as its left-hand side.

There are two possible outcomes of the evaluation:

▪ The conditional expression evaluates to false. In this case, the rule fails. When

a named rule fails, the cost engine does all the following:

o Evaluates the message construct (if there is one) whose name matches the
rule’s name (see Messages).

o Evaluates the advice construct (if there is one) whose name matches the
rule’s name (see Advice).

o Terminates evaluation of the current module’s rules, and returns false as the

module evaluation result.

▪ The conditional expression evaluates to true. In this case, the rule succeeds,

and module evaluation continues. If all the rules in a module evaluate to true,

module evaluation returns true.

A module’s returned value is used to help determine process and operation routing—see
Working with Cost Model Logic for more information on how return values help
determine routing.

See the following sections for information on each syntactic category mentioned above:

▪ Boolean Expressions

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 190

▪ Simple Identifiers

▪ Messages

Messages

A message construct has the following form:

Message <simple-identifier> : <string-expression>

Each message statement consists of an identifier (the message name) and a string
expression. Each message ends with a line break. The cost engine executes a message
statement only when a rule with a matching name fails. See Rules for information on
rules.

When the cost engine evaluates a message statement, it evaluates the string
expression, and appends the result to the cost engine log. See String Expressions for
information on string expression evaluation.

If a rule has more than one matching message, an error occurs when the module is
saved.

See the following sections for information on each syntactic category mentioned above:

▪ String Expressions

▪ Simple Identifiers

▪ Rules

Advice Rules

An advice rule has the following form:

AdviceRule <simple-identifier> : <boolean-expression>

Each advice rule consists of a simple identifier (the advice rule’s name) and a boolean
expression. Each advice rule ends with a line break.

When the cost engine evaluates an advice rule, it evaluates the boolean expression.
When the conditional expression evaluates to true, the cost engine evaluates the advice
construct whose name matches the advice rule’s name (see Advice).

See the following sections for information on each syntactic category mentioned above:

▪ Boolean Expressions

▪ Simple Identifiers

▪ Advice

Advice

An advice construct has the following form:

Advice <simple-identifier> : <function-invocation>

Each advice construct consists of an identifier (the advice name) and a call to the
function dtcMessage (see Miscellaneous Functions). Each advice construct ends with a
line break, and line breaks are allowed between parameters of the function call. The cost
engine executes an advice construct only when at least one of the following is true:

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 191

▪ Some rule with a matching name evaluates to false.

▪ Some advice rule with a matching name evaluates to true.

When the cost engine evaluates an advice construct, it evaluates the function invocation,
and appends the result, a dtcMessage object, to the list of dtcMessage objects for the
current process routing. dtcMessage objects contain information about the context in
which the associated rule failed or in which the associated advice rule succeeded; this
information is used to populate the Design to Cost panels in the aPriori Professional
interface (see Design to Cost in the aPriori Professional User Guide). For more
information on DtcMessage objects, see dtcMessage in Miscellaneous Functions.

If a rule or advice rule has more than one matching advice construct, an error occurs
when the module is saved.

See the following sections for information on each syntactic category mentioned above:

▪ Simple Identifiers

▪ Function Invocations

▪ Rules

▪ Advice Rules

Function Definitions

Each function definition has the following form:

<simple-identifier>(<simple-identifier>[, <simple-identifier>]*) =

<expression>

A function definition can be thought of as a parameterized formula. Syntactically, it
consists of two parts separated by “=”:

▪ Left hand side: the function name followed by a parentheses-enclosed, comma-
separated list of formal parameters. The function name and formal parameters
are all simple identifiers.

▪ Right hand side: an expression that may contain occurrences of the formal
parameters specified in the left hand side

Each function definition ends with a line break.

The cost engine evaluates a function invocation by evaluating the right hand side of the
function definition (in the same module) with a matching name, substituting the
invocation’s actual parameters for the definition’s corresponding formal parameters. See
Function Invocations for information on function invocations.

Note that CSL provides a number of predefined functions. See Predefined Functions for
more information.

See the following sections for information on each syntactic category mentioned above:

▪ Simple Identifiers

▪ Expressions

▪ Function Invocations

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 192

Expressions
An expression in CSL has one of the following forms:

▪ arithmetic-expression. See Arithmetic Expressions.

▪ string-expression. See String Expressions.

▪ boolean-expression. See Boolean Expressions.

▪ conditional-expression. See Conditional Expressions.

▪ function-invocation. See Function Invocations.

▪ query-expression. See Query Expressions.

▪ foreach-expression. See Foreach Expressions.

Arithmetic Expressions

An arithmetic expression designates a floating point number. It has the following form:

<term> [<binary-operator> <term>]

A binary-operator is one of the following:

▪ + (addition)

▪ - (subtraction)

▪ * (multiplication)

▪ / (division)

▪ ^ (exponentiation)

A term is one of the following:

▪ Numeric literal. See Numerical Literals.

▪ Identifier (must be number-valued). See Identifiers and Literals.

▪ Function invocation (must be number-valued). See Function Invocations.

▪ Arithmetic Expression. See Arithmetic Expressions.

Arithmetic expressions can be grouped using parentheses.

Conventional arithmetic precedence rules are followed:

▪ Parentheses

▪ Function Invocation

▪ Unary operators

▪ Exponentiation (symbol '^')

▪ Multiplication/division (symbols '*' and '/')

▪ Addition/subtraction (symbols '+' and '-')

▪ Left to right evaluation (textual order)

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 193

String Expressions

A string expression designates a string, that is, a sequence of characters. It has the
following form:

<string-literal>

<identifier>

Here the identifier must be string-valued.

In the message clause of a rule, the operator + can be used to form a complex string

expression:

<string-expression> + <string-expression>

The result of evaluation of a complex string expression is the result of concatenating the
values of the string-expressions.

See Identifiers and Literals for information on string literals and identifiers.

Boolean Expressions

A boolean-expression designates true or false. CSL boolean expressions use

conventional infix syntax:

[~]<term> [<binary-logical-operator> [~]<term>]*

A binary-logical-operator is one of the following:

▪ and

▪ or

Each term is one of the following:

▪ Boolean literal. See Boolean Literals.

▪ Identifier (must be boolean valued). See Identifiers and Literals.

▪ Function invocation (must be boolean valued). See Function Invocations.

▪ Arithmetic comparison. See below.

▪ Boolean expression. See Boolean Expressions.

An arithmetic-comparison has the following form:

<arithmetic-expression> <comparison-operator> <arithmetic-expression>

A comparison-operator is one of the following:

▪ > (greater than)

▪ >= (greater than or equal to)

▪ < (less than)

▪ <= (less than or equal to)

▪ == (equal to)

▪ <> (not equal to)

Boolean expressions can be grouped using parentheses.

Conventional precedence rules for conditional expressions are as follows:

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 194

▪ Parentheses (explicit expression nesting)

▪ ~ (logical negation)

▪ Arithmetic comparison

▪ and

▪ or

▪ Left to right (textual order)

Conditional Expressions

A conditional-expression has one of one of the following forms:

{ <expression> if <boolean-expression> [

 <expression> if <boolean-expression>]*

 <expression> otherwise }

{ if (<boolean-expression>) {[with-clause] <expression>} [

 else if (<boolean-expression>) {[with-clause] <expression>}]*

 else {[with-clause] <expression>} }

Here expression must not be a conditional expression; nested conditional expressions

are not allowed. See Expressions for information on other kinds of expressions.

Conditional expressions of the first form can contain a line break after a boolean-

expression. Conditional expressions of the second form can contain a line break

anywhere except within conjunctions or disjunctions (that is, except in between and/or
clauses in a boolean-expression)

Each pair of curly braces within a conditional of the second form is optional in the
absence of a with-clause.

A conditional expression evaluates to the value of the expression associated with the

first boolean-expression that evaluates to true. If no boolean-expression evaluates

to true, the conditional expression evaluates to the value of the expression associated

with the otherwise or else.

Function Invocations

Each function invocation has the following form:

<simple-identifier>(<actual-parameter>[, <actual-parameter>]*)

A function invocation consists of a function name followed by a parentheses-enclosed,
comma-separated list of actual parameters.

Each actual-parameter is one of the following:

▪ arithmetic-expression (see Arithmetic Expressions)

▪ boolean-expression (see Boolean Expressions)

▪ string-expression (see String Expressions).

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 195

The cost engine evaluates a function invocation by evaluating the right hand side of the
function definition with a matching name, substituting the invocation’s actual parameters
for the definition’s corresponding formal parameters. See Function Definitions for
information on function definitions.

The ith formal parameter in the left hand side of a function definition corresponds to the ith
actual parameter in the function invocation (for any positive integer, i).

The cost engine looks for a function definition with a matching name as follows:

▪ First, the following predefined functions are considered:

o is<ArtifactTypeName>()

o getPrevToolRow()

o getNextToolRow()

o getPrevMillRow()

o getNextMillRow()

o snapDownLookUp()

o getPrevBestDiamTolRow()

o getNextBestDiamTolRow

▪ Next, the cost engine considers functions defined in the current module (or in a
file imported by the current module).

▪ Finally, the cost engine considers other predefined functions.

Note that this means that user-defined functions override predefined functions with the
same name, except for the predefined functions listed above; the functions listed above
cannot be overridden.

Note that when a function invocation returns an object, it can be followed by object field
access dot notation, as in the following:

myFunction(5).id

Such a construct is one form of complex-identifier. See Identifiers and Literals for

more information on identifiers.

Note that CSL provides a number of predefined functions. See Predefined Functions for
more information.

Query Expressions

Query expressions are used to retrieve and aggregate values from collections. Their
semantics is essentially the same as SQL query semantics. A query expression
evaluates to a collection, object, string, number, or boolean value.

Each query expression has the following form:

select [distinct] <select-specification>

from <identifier> [[as] <simple-identifier>]

[where <boolean-expr>]

[group by <arithmetic-expr>[, <arithmetic-expr>]*]

[order by <arithmetic-expr> [asc | desc][, <arithmetic-expr> [asc |

desc]]*]

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 196

Select clause

Each select-specification has the following form:

{<select-arg> | <simple-identifier>(<select-arg>)}

Here the simple-identifier names one of the following query aggregate functions:

▪ first: returns the first element of the intermediate query

results.

▪ last: returns the last element of the intermediate query results.

▪ sum: returns the sum of the values in the intermediate query results.

▪ min: returns the smallest value in the intermediate query results.

▪ max: returns the largest value in the intermediate query results.

▪ count: returns the number of elements in the intermediate query results.

Each select-arg is one of the following:

▪ *

▪ <complex-identifier>

Note that select-arg can be the name of a formula whose right hand side includes

occurrences of the from clause’s simple-identifier. See From clause for

information on the from clause.

From clause

The identifier in the select clause must evaluate to the collection to be queried.

Note that tables in CSL are represented as collections whose elements are objects with
one field for each table column.

The simple-identifier in the select clause is an alias for a single element in the

collection being queried. It can occur in the following components of the query
expression:

▪ select-specification in the select clause

▪ boolean-expression in the where clause

▪ arithmetic-expressions in the group by clause

▪ arithmetic-expressions in the order by clause

This alias can also occur in the right hand side of formulas whose evaluation is
necessitated by evaluation of expressions in the query. The simple-identifier is has

file scope.

Examples

numManualMigWelds = _

 select count(w) from welds w _

 where w.type != 'Spot' and not w.isRobotic

componentMass = _

 select sum(c.weight) from part.subcomponents c

finishMass = _

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 197

 select sum(w.weldWeight) from childOps w _

 where isWeld(w)

weldWeight = _

 select sum(op.weldWeight) from childOps op

numCostableWelds = _

 select count(a) from part.childArtifacts a _

 where isWeld(a) and a.costable

computedClampTime = _

 select first(entry.loadTime) from xtraLoadTime entry _

 where entry.weight >=gcd.weight _

 order by entry.loadTime // time (secs) for load part

coreboxCostVoids =

 select sum(operation.hardToolingCost) from childOps operation _

 where operation.artifactType.name =='Void' _

 group by _

 adaptiveRound(operation.volume, _

 voxelVolumeError(voidCoreArea(operation))), _

 adaptiveRound(operation.boxLength, voxelLengthError), _

 adaptiveRound(operation.boxWidth,voxelLengthError), _

 adaptiveRound(operation.boxHeight,voxelLengthError)

Foreach Expressions

Foreach expressions provide collection access. Simple foreach expressions have the
following form:

foreach (<identifier-1> : <expression-1>) <identifier-2>(<identifier-

3>) {

 <identifier-3> = <expression-2>

}

Here is an example:

x = foreach (tool : tools) getFirst(t) { _

 t = { tool if tool.diameter > 5 null otherwise }

}

Such a foreach expression specifies:

▪ Iteration variable (identifier-1, which must be a simple identifier)

▪ Collection (expression-1, which must be collection-valued)

▪ Reduction function (identifier-2, which must name a function)

▪ Formula containing the iteration variable (named by identifier-3)

Evaluation of a foreach expression effectively does the following:

▪ Iterates through the collection elements one at a time, binding each element to
the iteration variable in turn. For each iteration, it does this:

o Evaluates the formula, with the current element bound to the iteration variable
within the formula.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 198

o Adds the result of the formula evaluation to a results collection.

▪ Applies the reduction function to the results collection, once all elements have
been processed, yielding the foreach expression’s final result.

The cost engine uses knowledge of the semantics of the reduction functions to optimize
evaluation of foreach expressions, so it does not always actually process every
collection element.

CSL supports the following reduction functions:

▪ getFirst: Returns the first non-null element of the results collection.

▪ getAll: Returns the entire results collection.

▪ getAllFlatten: Returns a flattened results collection, that is, returns a collection
containing all non-collection elements in the results collection, together with the
non-collection elements of any collection elements of the results collection, and
so on, recursively.

▪ getMax: Returns the element of the results collection that has the maximum
numeric value.

▪ getMin: Returns the element of the results collection that has the minimum
numeric value.

▪ getSum : Returns the sum of the elements of the results collection.

▪ getProduct: Returns the product of the elements of the results collection.

▪ getStats: Returns an object that contains one field for each of a variety of
statistical properties of the results collection (including mean, standard deviation,
minimum, maximum, and count--see
http://commons.apache.org/math/apidocs/org/apache/commons/math3/stat/descr
iptive/DescriptiveStatistics.html)

▪ getObjectWithMax: Returns the value of the iteration variable (an element of the
collection being iterated over) associated with the maximum element of the
results collection. Consider a foreach expression that evaluates a cycleTime

formula for each operation in a collection. While getMax(cycleTime) returns a

number, getObjectWithMax(cycleTime) returns the operation with the

maximum cycle time.

▪ getObjectWithMin: Returns the value of the iteration variable (an element of the
collection being iterated over) associated with the minimum element of the
results collection. Similar to getObjectWithMax.

▪ buildGroup

▪ getAllDistinct: Returns the results collection with duplicates removed.

Examples:

x = foreach (tool : select * from tools where diameter > 5) getFirst(t)

{ _

 t = tool.diameter

}

x = foreach (tool : select * from tools where diameter > 5) getFirst(t)

{ _

http://commons.apache.org/math/apidocs/org/apache/commons/math3/stat/descriptive/DescriptiveStatistics.html
http://commons.apache.org/math/apidocs/org/apache/commons/math3/stat/descriptive/DescriptiveStatistics.html

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 199

 t = foreach (t : tool.machines) getAll(q) { q = }

}

With Clause

Foreach and some if expressions can include auxiliary formulas whose evaluation is
required for evaluation of the primary (output) formula:

foreach (<identifier-1> : <expression-1>) <identifier-2>(<identifier-

3>) {

 with {

 formula [

 formula]*

 }

 <identifier-3> = <expression-2>

}

Here is an example:

foreach (t : tools) getAll(f) { _

 with { _

 z = t.diameter *2

 q = select * from t.machines....

 r = z * 10

 }

 f = { t if (r > 5 and q != null) null otherwise }

}

Like Expressions

Like expressions can be used to determine if a given string matches a given regular
expression. Each like expression has the following form:

{<string-expression> | <function-invocation>} like

{<string-expression> | <function-invocation>}

If an operand is a function invocation, it must be string-valued.

The right operand must evaluate to a regular expression, as described in

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html, with the addition
that the following characters (supported by SQL like) are allowed:

▪ % : matches an arbitrary sequence of characters (equivalent to .* in Java’s

regular expression dialect)

▪ _ : matches a single arbitrary character (equivalent to . in Java’s regular

expression dialect)

A like expression evaluates to true if the value of the left operand matches the regular

expression pattern designated by the right operand. It evaluates to false otherwise.

Example

isCore(op) = (op.name like '%Coring')

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 200

Identifiers and Literals
An identifier in CSL has one of the following forms:

▪ simple-identifier. See Simple Identifiers.

▪ complex-identifier. See Complex Identifiers.

Simple Identifiers

A legal simple identifier consists of a letter (A-Z, a-z) or underscore (_) followed by any
number of letters, numbers or underscores. Note that dashes (-) are not legal in
identifiers (as they are interpreted as minus signs). Also, unlike CSL Templates,
identifiers in rules and formulas cannot include spaces.

Complex Identifiers

A complex identifier can have either of the following forms:

<simple-identifier>.<simple-identifier>[.<simple-identifier>]*

<function-invocation>.<simple-identifier>[.<simple-identifier>]*

See Simple Identifiers for information on simple identifiers. See Function Invocations for
information on function invocations.

The function invocation or simple identifier to the left of the dot must be object valued.

A complex identifier can also have either of the following forms:

<simple-identifier>[string-literal]

<simple-identifier>[numerical-literal]

Note that the square brackets in the two lines above do not indicate optionality—they are
not used as meta-characters, here; square brackets characters occur as part of these
types of complex identifiers.

See Numerical Literals for information on numerical literals. See String Literals for
information on string literals.

In these cases, the simple identifier to the left of the dot must be map valued. See also
Map Functions.

Examples

part.totalCost

myFunction(5).id

myMap[3]

myMap[‘blue’]

Numerical Literals

There are three forms of numeric literals: integer, real and scientific.

▪ Integer literals can begin with an optional sign (+,-) and consist of a sequence of
digits (0-9)

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 201

▪ Real literals can begin with an optional sign (+,-) followed by a sequence of digits
(0-9) followed by a dot (.) followed by a sequence of digits (0-9). Note that if
there is a dot there must be one digit to the right of it. Thus "10." is not legal
syntax, whereas "10.0" is.

▪ Scientific literals follow the same rules as real literals with the addition of an 'e' or
'E' followed by an optional sign followed by a sequence of (one or more) digits.

String Literals

Strings are enclosed by single quotes, ', and can contain any letter or digit except single

quote, backslash, \n or \r. These characters (or character sequences) have to be

escaped with a backslash. So, a string literal consisting of a single backslash followed
by a single quote would be '\\\''.

Boolean Literals

There are two Boolean literals: true and false.

Comments and Line Continuation
CSL supports three different forms for comments. Multiline comments are enclosed
between "/*" and "*/", while single line comments can follow either a double-slash "//" or
a pound sign "#".

The following constructs must end with a line break:

▪ Import directive

▪ Formula

▪ Rule

▪ Message

▪ Function definition

▪ Set block

Line breaks within these constructs require use of the line continuation character (a
space followed by an underscore--see below), except as follows:

▪ Conditional expressions can contain a line break after a boolean expression that
follows if.

▪ Set blocks must contain a line break after each formula.

▪ Foreach expressions must contain a line break after each formula.

CSL permits VB-style line continuation:

// A space followed by the underscore is line continuation

a_bool = (part.thickness > machine.minThickness) && _

 (part.thickness < machine.maxThickness)

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 202

Predefined Functions
CSL supports the following categories of predefined functions:

▪ Numeric Functions

▪ String Functions

▪ List Functions

▪ Map Functions

▪ Node Attribute Functions

▪ Routing Navigation Functions

▪ Error Handling Functions

▪ Interpolation Function

▪ Miscellaneous Functions

Numeric Functions

CSL supports the following predefined numeric functions.

abs(x)

Returns the absolute value of x. The argument must be numeric.

acos(x)

Returns the arccosine of x in degrees.

asin(x)

Returns the arcsine of x in degrees.

atan(x)

Returns the arctangent of x in degrees.

cos(x)

Returns the cosine of the angle specified in degrees by x.

divZero(x, y)

Returns x/y if y <> 0; returns 0 otherwise.

equalsEps(x, y, z)

Returns true if abs(x - y) is strictly less than z; returns false otherwise

exp(x)

Returns the mathematical constant e raised to the x power.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 203

interpolate(x, x0, x1, y0, y1)

Returns the y-coordinate of the point on the specified line whose x-coordinate is x. The

specified line is the line containing both the points (x0, y0) and (x1, y1). If x0 equals x1,

the function returns y0.

len(x)

Returns the cardinality of the collection x. An exception is thrown if x is not a collection.

ln(x)

Returns the natural logarithm of x.

max(x, y, z, ...)

Returns the maximum of the specified values.

maxNonNegativeNumber(x, y, z, ...)

Returns the maximum of the specified values, excluding negative numbers. If no
argument is a non-negative number, invalidScriptException is thrown.

min(x, y, z, ...)

Returns the minimum of the specified values.

minNonNegativeNumber(x, y, z, ...)

Returns the minimum of the specified values, excluding negative numbers. If no
argument is a non-negative number, invalidScriptException is thrown.

round(x)

Return the natural rounded value of (that is, the nearest integer to) x. As usual, for any
integer, n, values in the interval [n - 0.5, n + 0.5) round to n.

roundEps(x, y)

Return the value of rounding x, naturally, to the precision specified by y. Examples:

▪ roundEps(1.45, 0.1) returns 1.5

▪ roundEps(1.44, 0.1) returns 1.4

rounddown(x)

Return the greatest integer less than or equal to x (that is, returns the integer value of x,
or floor of x).

roundup(x)

Returns the least integer greater than or equal to x (that is, returns ceiling of x).

sin(x)

Returns the sine of the angle specified in degrees by x.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 204

sqrt(x)

Returns the positive square root of x.

sum(x, y, z, ...)

Returns the sum of arguments y, z, ... evaluated against all elements of the collection x.

tan(x)

Returns the tangent of the specified angle, x. The angle is specified in degrees.

getProperty(row, column)

Returns the value of the collection row for the attribute column.

String Functions

CSL supports the following predefined functions for the manipulation of strings.

Conversion Functions

These functions convert between strings and numbers.

asNumber(s)

Converts the string s to a double.

asString(n)

Converts the number n to a string. Note that n is interpreted as a double and may often
have more digits after the decimal than expected. Use in conjunction with mid() to

reduce to simple form if desired.

downCase(s)

Modifies a string so that it is all lowercase; that is, converts all uppercase alphabetic
characters to their lowercase equivalent. If s is a number, this function converts it to a
string.

htmlEscape(s)

Returns a version of the string with any reserved HTML characters replaced by their
associated HTML entities. For example, '<' is replaced with '<'; '&' is replaced with
'&'. The resulting string can be displayed safely in HTML-formatted fields.

upcase(s)

Modifies a string so that it is all uppercase; that is, converts all lowercase alphabetic
characters to their uppercase equivalent. If s is a number, this function converts it to a
string.

Index Functions

These functions return a string index that meets a specified condition.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 205

index(s1, s2)

Returns the start index of the first occurrence of string s2 in string s1. The smallest index
is 1 (that is, indexes are 1-based, not 0-based). Returns -1 if s2 does not occur in s1.

index(s1, s2, i)

Returns the start index of the first occurrence of string s2 that starts at or after index i in
string s1. The smallest index is 1 (that is, indexes are 1-based, not 0-based). Note that
index(s1, s2, 1) is equivalent to index(s1, s2). Returns -1 if there is no such

occurance.

lastIndex(s1, s2)

Returns the start index of the last occurrence of string s2 in string s1. The smallest index
is 1 (that is, indexes are 1-based, not 0-based). Returns -1 if s2 does not occur in s1.

lastIndex(s1, s2, i)

Returns the start index of the last occurrence of string s2 that starts at or before index i
in string s1. The smallest index is 1 (that is, indexes are 1-based, not 0-based). Returns
-1 if s2 does not occur in s1.

len(s)

Returns the length of the string s.

Substring Functions

These functions return a substring that meets a specified condition.

mid(s, i)

Returns the trailing substring of string s whose first character is at index i.

mid(s, i, j)

Returns the substring of string s that whose first character is at index i and whose last
character is at index j-1. The character at index j is not included in the returned string.

prefix(s1, s2)

Returns the leading substring of string s1 whose last character is immediately before the
first occurrence of s2 in s1. If s2 is not found or is equivalent to s1, the empty string is
returned.

searchString(string, regular-expression)

Returns a list of sub-strings from the specified string that match the specified regular
expression pattern. The second argument must evaluate to a regular expression, as
described in http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html. See
also Like Expressions.

splitString(string, regular-expression)

Returns a list of sub-strings created by splitting the original string whenever the
separator string is found. The separator string is typically a single character, but can be
a regular expression. Any whitespace before or after each of the resulting sub-strings is
automatically trimmed. Examples:

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 206

splitString('abc:def:ghi', ':') returns ['abc', 'def', 'ghi']

splitString('abc.def.ghi', '\\.') returns ['abc', 'def', 'ghi'] (Note that '.'

has to be escaped as '\\.' in the separator expression.)

suffix(s1, s2)

Returns the substring of s1 that immediately follows the first character of the last
occurrence of s2 in s1. Typically s2 is one character in length. Note that if s2 is more
than one character in length, the returned string includes all characters of s2 except the
first. If s2 is not found or matches the last character of s1, the empty string is returned.

suffix2(s1, s2)

Returns the substring of string s1 that immediately follows the last character of the last
occurrence of s2 in s1. If s2 is not found, is equivalent to s1, or matches a trailing
substring of s1, the empty string is returned.

List Functions

CSL supports the following functions for the manipulation of lists. The use of these
functions is illustrated in an example, below.

asPair(object-1, object-2)

Creates a Pair containing the two objects. These objects can later be accessed using
pair.first and pair.second respectively.

asList(element-1, … , element-n)

Returns a new list containing the arguments as elements. If there are no arguments (as
in asList()), an empty list is returned. (Note that an empty list is different from a list

whose only member is null, which is returned by asList(null).) The expression

listCons(a,asList()) returns the list containing a.

listCons(newHead, list)

Returns a new list that prepends newHead to list. (This is implemented without copying

list; it is performed in constant time, that is, the amount of time it takes is the same

regardless of the size of the list.)

listAsString(list, [separator])

Converts each element of the list (or any collection) into a string and concatenates them,
separating them with the given separator. If unspecified, the default separator is ', '
(comma-space), giving a similar result to asString(), but without the surrounding

square brackets.

For example:
listAsString(asList('one', 'two', 'three')) - returns 'one, two, three'

listAsString(asList('one', 'two', 'three'), ' | ') - returns 'one | two | three'

listAsString(asList(1, 2, 3)) - returns '1.0, 2.0, 3.0'

If list is null, an empty string is returned (the same as for an empty collection).

Otherwise, if list is not a collection the result matches asString().

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 207

listFirst(list)

Returns the first element of list. (This is performed in constant time.)

listGet(list, i)

Returns ith element the list. List indexing is1-based (that is, a list’s first element has

index 1 rather than index 0). If i is not a number between 1 and the size of the list, an

exception is issued.

listRest(list)

Returns a list that includes everything in list except its first element. (This is performed

in constant time; the list is not copied or modified.)

listReverse(list)

Returns a new list that contains the elements of list in reverse order. (The time to

perform this increases linearly with the number of elements in the list.)

listSize(list)

Returns the number of elements in list. Returns 0 if list is not a list. This function

works if the underlying object is any type of Java Collection.

Example

ListOfUpstreamSiblings(op) =

ListOfUpstreamSiblings1(op,op.parent.children)

// if we run out of siblings, or we hit op, return the empty list

ListOfUpstreamSiblings1(op,siblings) = { _

 asList() _

 if (siblings == null or listFirst(siblings) == op)

 listCons(listFirst(siblings),ListOfUpstreamSiblings1(op,listRest(

siblings)))_

 otherwise }

Note that recursion such as is used in this example does not scale with list size, and can
lead to stack overflow errors with large lists.

Map Functions

CSL supports the following functions for the manipulation of maps (ordered or unordered
collections of key-value pairs):

asMap(key-1, value-1, ... key-n, value-n)

Returns a new, unordered map containing the pair <key-i, value-i>, for every i between

1 and n, inclusive. There must be an even number of arguments. The arguments must
alternate between key and value, and must start with a key and end with a value. If there

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 208

are no arguments (as in asMap()), an empty map is returned. The map is implemented

as a Java HashMap.

asOrderedMap(key-1, value-1, ... key-n, value-n)

Returns a new, ordered map containing the pair <key-i, value-i>, for every i between 1

and n, inclusive. There must be an even number of arguments. The arguments must
alternate between key and value, and must start with a key and end with a value. If there
are no arguments (as in asMap()), an empty map is returned. The map is implemented

as a Java TreeMap.

mapGet(map, key)

Returns the value associated with the given key in the map. For Integer and String keys,
you can also use the square-bracket notation, as in myMap[3] and myMap['blue'].

Calls to mapGet work for any key type.

mapPut(map, key, value)

Adds a new key-value pair to an existing map.

Node Attribute Functions

CSL supports the following functions related to node attributes. The use of these
functions is illustrated in Examples, below.

getAttributeValue(op, attributeName)

Returns, as a string, the value of the attribute named attributeName for the node op, if

the attribute exists; returns null otherwise.

getAttributeValueAsBoolean(op, attributeName)

Returns, as a Boolean, the value of the attribute named attributeName for the node op,

if the attribute exists; returns false otherwise.

getAttributeValueAsNumber(op, attributeName)

Returns, as a number, the value of the attribute named attributeName for the node op,

if the attribute exists; returns 0.0 otherwise.

getNodeInTree(op, attributeName)

This function searches the process routing or operation sequence in which op occurs, as

well as the ancestors of op in the process-operation hierarchy (see Hierarchies). The
function returns a node with the specified attribute, if there is one, and returns null
otherwise.

Note that the search includes optional nodes, regardless of whether they are active in
the process routing or operation sequence. To determine if an optional node is active,
check the value of its inclusionStatus property (see InclusionStatus and

Examples).

Note that a process routing or operation sequence is a template instantiation (see
Hierarchies), and so is potentially tree structured. The function searches all the nodes in
that tree. The function also searches ancestors of op in the process-operation hierarchy;

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 209

so, for example, if op is a Bending operation on a SimpleHole child of a MultistepHole,
the function checks the parent operation node, MultistepHolemaking, as well as all the
nodes in the SimpleHole’s operation sequence.

hasAttribute(op, attributeName)

Returns true if the node op has an attribute named attributeName; returns false

otherwise.

hasNodeInTree(op, attributeName)

This function searches the process routing or operation sequence in which op occurs. It

returns true if any node in the routing or sequence has the attribute with the specified

name; it returns false otherwise.

Note that the search includes optional nodes, regardless of whether they are active in
the process routing or operation sequence. To determine if an optional node is active,
check the value of its inclusionStatus property (see InclusionStatus and

Examples).

hasNodeInTreeWithTrueValue(op, attributeName)

This function searches the process routing or operation sequence in which op occurs. It

returns true if any node in the routing or sequence has the attribute with the specified

name and that attribute evaluates to true; it returns false otherwise.

Note that the search includes optional nodes, regardless of whether they are active in
the process routing or operation sequence. To determine if an optional node is active,
check the value of its inclusionStatus property (see InclusionStatus and

Examples).

Examples

Following is an example of checking a simple hole to see if its operation sequence
includes a hole finishing operation. The check is performed by feasibility modules of
primary holemaking operations. If a finishing operation is included in the sequence,
feasibility doesn’t require that the primary holemaking operation be capable of achieving,
by itself, the GCD’s desired tolerance. (The library function
IsProcessAllGtolCapable2() tests whether the primary operation alone can achieve

the required tolerance.)

 Note that optional nodes always return true when you use hasNodeInTree(),

regardless of whether they are ultimately evaluated. To determine if an optional node is
active, use getNodeInTree() to retrieve the node in question, and then check the value

of its inclusionStatus property, as in the example below.

IsProcessAllGtolCapable(gcd, process) = {

 true if not(gcd.isAnyToleranceSpecified)

 true if hasAttribute(op, 'primaryHolemakingOp') and _

 (safeEval(getNodeInTree(op, 'SimpleHoleFinishing'

).inclusionStatus, _

 null) == InclusionStatus.AUTO_INCLUDE or _

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 210

 safeEval(getNodeInTree(op, 'SimpleHoleFinishing'

).inclusionStatus, _

 null) == InclusionStatus.USER_INCLUDE)

 true if hasAttribute(op, 'primaryGtolOp') and _

 (safeEval(getNodeInTree(op, 'FinishGrinding').inclusionStatus,

_

 null) == InclusionStatus.AUTO_INCLUDE or _

 safeEval(getNodeInTree(op, 'FinishGrinding').inclusionStatus, _

 null) == InclusionStatus.USER_INCLUDE)

 IsProcessAllGtolCapable2(gcd, process) otherwise }

The following example illustrates working with parent/child GCD relationships. It
considers a child Planar Face of a Ring, and uses getNodeInTree() to check whether

heat treatment is included in the component’s routing (the parent’s parent’s process
routing). This approach also works with basic getAttributeValue() functions.

(safeEval(_

 getNodeInTree(_

 op.parentArtifactResult.parentArtifactResult, _

 'heatTreatProcess').inclusionStatus, _

 null) == InclusionStatus.AUTO_INCLUDE or _

safeEval(_

 getNodeInTree(_

 op.parentArtifactResult.parentArtifactResult, _

 'heatTreatProcess').inclusionStatus, _

 null) == InclusionStatus.USER_INCLUDE)

The following example is used in Casting, and is related to yields. aPriori starting point
models assume that any parts scrapped within the Casting process group (that is, within
a casting foundry) can be remelted. So the starting point calculates two different
versions of final yield. One is based on the number of parts scrapped both within Casting
and by any secondary processes (this is used to calculate overhead costs for Casting).
The other is based on the number of parts scrapped outside of the foundry, that is, by
secondary processes only (this is used to calculate material cost in Casting).

The code below checks to see if the node in question has the inFoundryProcess attribute,
which indicates that the process occurs within the Casting foundry (where scrapped
parts are remelted).

set {

 global.numScrapPartsDownStream = {

 numScrapParts if safeEval(global.numScrapPartsDownStream, null)

== null

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 211

 numScrapParts + global.numScrapPartsDownStream otherwise }

 global.numScrapPartsOutsideFoundry = {

 _LEAVE_UNCHANGED_ if hasAttribute(op, 'inFoundryProcess')

 numScrapParts if safeEval(global.numScrapPartsOutsideFoundry,

null) == null

 numScrapParts + global.numScrapPartsOutsideFoundry otherwise }

}

The following example illustrates how to populate Machining custom outputs that support
the display of total times for holemaking, roughing, and finishing. Each machining
operation is tagged with the node attribute operationCategory whose values is
Roughing, Finishing, or Holemaking. The library libCustomProcessOutputs.csl runs
through all the operation cycle times and categorizes them based on the operation
category.

ca_totalSurfaceFinishingOperations3 = _

 select sum(op.formulaResults.cycleTime) from allSetupOps op where

_

 op.formulaResults.cycleTime != null and _

 getAttributeValue(op, 'operationCategory') ==

'Finishing'

Following is an example that uses a node attribute to tag an operation so that other
operations can determine whether the tagged operation is present in the current
operation sequence. This example checks whether a Simple Hole has been previously
threaded, where other processes in the routing that perform threading are tagged with
the node attribute PreviouslyThreaded. You'll find this attribute on operations such as
Simple Hole Tapping in Progressive Die.

Rule IsThisThreaded: gcd.threaded == true and _

 not(hasNodeInTree(op, 'PreviouslyThreaded'))

Message IsThisThreaded: _

 'This hole is unthreaded or threaded by a prior operation'

The following example uses getNodeInTree() together with getAttributeValue() to

check a machining operation sequence for the presence of a finishing operation:

foo = getNodeInTree(op, 'operationCategory')

Rule foo: getAttributeValue(foo, 'operationCategory') == 'Finishing'

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 212

Note that if there are multiple nodes with the specified attribute, getNodeInTree()

returns only the first one.

Routing Navigation Functions

isNodePrecededBy(node, precedingNodeName)

Returns true if node is preceded by precedingNodeName in the current process routing

or operation sequence; returns false otherwise.

example:

bool = isPrecededBy(op, 'Drilling')

Error Handling Functions

assert(val, ruleName)

Tests the rule with the specified name. If it evaluates to true, val is returned. If the rule

evaluates to false, a costing exception is thrown (halting costing at that level). If a

message is associated with the rule that failed, that message is used in the costing
exception.

assert(val, ruleName, message)

Tests the rule with the specified name. If it evaluates to true, val is returned. If the rule

evaluates to false, a costing exception using message is thrown (halting costing at that

level).

fail(message)

Throws a costing exception using message (halting costing at that level).

msg(x, y, ...)

Takes one or more arguments and returns a string that is the concatenation of the string
form of each argument. Decimal precision is limited to four digits after the decimal. This
function can be nested inside fail() or assert() calls to improve messaging.

Examples:

message = fail('Literal')

message2 = fail(indirect)

indirect = 'Indirect'

//bar throws an exception with the message 'Zero val indirect'

bar = {

 fail(zeroval) if (1 > 0)

 3 otherwise

}

//message3 causes a failure whose message is "The diameter -1 is

bogus."

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 213

message3 = fail(msg('The diameter: ', diameter, ' is bogus.'))

diameter = -1

//assert tests

atrue = assert(foo, myrule) //Returns 7

atruemsg = assert(foo, myrule, 'Should pass') //Returns 7

atruemsgindirect = assert(foo, myrule, shouldpass) //Returns 7

foo = 7

shouldpass = 'Should pass indirect'

Rule myrule: 1 > 0

afalse = assert(foo, myfailrule) //Throws an exception with a default

message

//Throws an exception with the message 'Zero val'

afalsemsg = assert(foo, myfailrule, 'Zero val')

//Throws an exception with the message 'Zero val indirect'

afalsemsgindirect = assert(foo, myfailrule, zeroval)

zeroval = 'Zero val indirect'

Rule myfailrule: 1 < 0

inline = 3 + assert(foo, myrule, shouldpass) //Returns 10

//Throws an exception with the message 'Zero val indirect'

inlinefail = 3 + assert(foo, myfailrule, zeroval)

// Compute Cycle Time for Each Bend

//operation cycletime in secs

cycleTime = machine.bendCycleTime + manipulationTimePerBend

cycleTime = fail('Test fail.')

finishMass = part.volume * material.density * 1e-9

//use finish part mass as we can assume that bending occurs after

//all material removed by other ops

partMass = finishMass

// time (secs) for load/unload etc within the process cycle (secs)

manipulationTimePerBend = _

 select first(entry.manipulationAllowance) _

 from smBendBrakeHandling entry _

 where entry.weight >=partMass _

 order by entry.manipulationAllowance

Interpolation Function

interpolate(x, x0, x1, y0, y1)

Returns the y-coordinate of the point on the specified line whose x-coordinate is x. The

specified line is the line containing both the points (x0, y0) and (x1, y1). If x0 equals x1,

the function returns y0.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 214

Miscellaneous Functions

calculateNesting(op)

Given an operation on an Additive Manufacturing part, returns an object that represents
the arrangement of parts nested on the build platform. This object has the following
fields:

▪ numberofPartsPerLayer: number of parts on the build platform, or (for DMLS), the
number of parts in one layer of parts in the build chamber.

▪ actualNestingLength: length of the portion of the build platform that is occupied by
the nested parts.

▪ actualNestingWidth: width of the portion of the build platform that is occupied by the
nested parts.

This function returns a value for operations in both the Additive Manufacturing and
Machining process groups.

dtcMessage(field-name-1, field-value-1, ... field-name-n, field-value-n)

This function should be used in conjunction with a CSL Advice construct, as described in
Advice.

A call to the function creates a dtcMessage object. When the cost engine evaluates the
Advice construct that includes the call, it adds the created dtcMessage object to the list of
dtcMessage objects associated with the current process routing. For a given costing, this
list of dtcMessage objects for the selected routing determines the contents of many of the
Design-to-Cost displays for Sheet Metal, Casting, and Plastic Molding.

The arguments specify the values of some of the fields of the created dtcMessage object.
The arguments consist of alternating field names and field values. A field value

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 215

argument specifies the value for the field named by the argument that precedes it. Here
is a sample call to the function in the context of an Advice Rule and Advice construct:

AdviceRule holeToEdgeMessage: badHoleEdgeRelations <> null

Advice holeToEdgeMessage: dtcMessage(

 'attributeId', 'dtcHoleAdvice.holeToEdgeAttribute',

 'messageId', 'dtcHoleAdvice.holeToEdgeMessage',

 'secondaryGcd', blankGcdKeyName,

 'current', worstEdgeRelation.distance,

 'suggestedMin', holeToBlankRecommendedProcess,

 'unitType', DTC_LENGTH,

 'custom.edgeList', listAsString(holeToEdgeNameListDistinct),

 'category', DTC_PROXIMITY)

A field is either predefined or user-defined. The predefined fields are listed below. A
user-defined field must have a name that starts with “custom.”, for example,
“custom.msgTolType”.

The value of a predefined field is either user-specified or automatically-supplied. User-
specified values are specified by arguments to the dtcMessage function. Values that are
supplied automatically are based on the runtime context or on user-specified values for
other fields.

Following are the predefined fields that are user-specified:

▪ attributeId: string specifying the attribute or aspect of the current GCD that played
a key role in triggering the associated advice rule or in causing the failure of the
associated routing rule. This string is specified in one of two ways:

o Directly, as in 'Diameter' (for a rule that failed, for example, because the
current GCD’s diameter is too small)

o Indirectly as a lookup key, such as 'dtcHoleAdvice.holeMinAttribute'. The key,
prefixed with 'DtcMessages' (as in 'DtcMessages.dtcHoleAdvice.holeMinAttribute'),
is used to look up a message in the properties file cmvMessages.properties.

The string specified by this field is used to populate the following elements of
Design-to-Cost displays:

o Tolerance column on the Finishing Operations tab of the Tolerances and
Special Finishing Operations dialog.

o Issue dropdown menu for the Casting Issues dialog (which appears when you
click Review in the Casting section of the Design-to-Cost panel).

o Issue dropdown menu for the Plastic Issues dialog (which appears when you
click Review in the Plastic Issues section of the Design-to-Cost panel).

o Sub-Type column for the Fabrication Issues dialog (which appears when you
click Review in the Fabrication Issues section of the Sheet Metal Design-to-
Cost panel).

▪ messageId: string specifying the circumstances that triggered the associated
advice rule or that caused the failure of the associated routing rule. This string is
specified in one of two ways:

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 216

o Directly, as in 'Hole is too small' (for a rule that failed, for example, because the
current GCD’s diameter is too small)

o Indirectly as a lookup key, such as 'dtcHoleAdvice.holeMinMessage'. The key,
prefixed with 'DtcMessages' (as in 'DtcMessages.dtcHoleAdvice.holeMinMessage'),
is used to look up a message in the properties file cmvMessages.properties.

The specified string can include placeholders that reference other fields,
including custom fields and read-only fields. A placeholder for a given field is the
name of the field enclosed in braces and prefixed by $. Here are some examples:

'Hole is too small to be cut with ${process}'

'Hole is too close to the following hole(s): ${custom.holesList}'

The read-only field messageText contains the result of substituting the appropriate
values for the placeholders.

The string specified by this field provides the text for the message that appears
below the table in the Casting Issues, Plastic Issues, or Fabrication Issues dialog
when a table row is selected.

▪ secondaryGcd: GCD, other than the current GCD, that played a key role in
triggering the associated advice rule or in causing the failure of the associated
routing rule. For example, if an advice rule is triggered because the current hole
is too close to a second hole, secondaryGcd might be set to the second hole.

The value of this field is used to populate the GCD #2 column of the Proximity
Issues table in the Fabrication Issues dialog (for the Sheet Metal process group).

▪ current: this is the value of an attribute of the current GCD that played a key role
in triggering the associated advice rule or in causing the failure of the associated
routing rule. For example, if an advice rule is triggered because the current hole
is too close to a second hole, current might be set to the distance between the
holes.

The read-only field currentText provides a display-friendly version of the value of
current, for example, "10 mm" or "15 º". The text includes the default units
associated with the unit type specified by the unitType field. See also
decimalPlaces, below.

The value of the currentText field is used to populate the Current column of the
table in the Casting Issues, Plastic Issues, or Fabrication Issues dialog. It is also
used to populate the Current value column of the table in the Finishing Operations
tab of the Tolerances and Machining dialog.

▪ suggested: this is an advisable value for the attribute whose actual value is given
by current. Set this field if advice is triggered because current differs from the
advisable value. See also suggestedMin and suggestedMax, below.

▪ suggestedMin: this is the minimum advisable value for the attribute whose actual
value is given by current. Set this field if creation of advice is triggered because
current is less than the advisable minimum (or, more generally, because current is
not between the advisable minimum and advisable maximum—see suggestedMax,
below). For example, if an advice rule is triggered because the current hole is too
close to a second hole, suggestedMin might be set to the minimum advisable
distance between holes.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 217

▪ suggestedMax: this is the maximum advisable value for the attribute whose actual
value is given by current. Set this field if advice is triggered because current is
greater than the advisable maximum (or, more generally, because current is not
between the advisable minimum and advisable maximum—see suggestedMin,
above). For example, if an advice rule is triggered because the current hole is too
deep, suggestedMax might be set to the maximum advisable hole depth.

▪ unitType: unit type for the values of current, suggested, suggestedMin, and/or
suggestedMax. This field is used to help provide display-friendly versions of these
values via the read-only fields currrentText (see current, above) and suggestedText
(see below).

▪ decimalPlaces: number of decimal places to use for the display of values of current,
suggested, suggestedMin, and/or suggestedMax. This field is used to help provide
display-friendly versions of these values via the read-only fields currrentText (see
current, above) and suggestedText (see below). If the field is not set or is set to -1,
a maximum of 3 decimal places are displayed. The table below shows several
examples of currentText values for various combinations of decimalPlaces and
current:

decimalPlaces

current currentText

-1 (default) 5 5

-1 (default) 5.3 5.3

-1 (default) 5.78264 5.783

2 5 5.00

2 5.78264 5.78

▪ category: free-form string that is used to categorize advice messages. For
example, the value of category is DTC_PROXIMITY (defined as the string
'proximityWarning') for any dtcMessage object that is used to report a proximity
issue in the Fabrication Issues dialog for the Sheet Metal process group.

▪ priority: relative importance of this advice message. In a future release, Design to
Cost may support filtering of messages by importance.

An invocation of the dtcMessage function can contain 0 or more field-name/field-value
pairs. But note that a dtcMessage object is used to determine the content of Design-to-
Cost panels only if the appropriate fields are set. See further below.

Following are the read-only fields of dtcMessage objects. Their values are set based on
field values specified by function arguments (see for example the field current, above) or
based on aspects of the context in which the function is invoked, such as the current
operation or GCD.

▪ gcd: current GCD.

▪ process: current process or operation.

▪ vpe: current VPE.

▪ attributeText: this is the string specified by the field attributeId (see above). When
the dtcMessage function is executed, the cost engine attempts to use the value of
attributeId (prefixed with 'DtcMessages') as a lookup key. If a message with that key
is found in cmvMessages.properties, the field attributeText is set to that message.
Otherwise, attributeText is set to the value of attributeId.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 218

▪ messageText: this is the string specified by the field messageId (see above). When
the dtcMessage function is executed, the cost engine attempts to use the value of
messageId (prefixed with 'DtcMessages') as a lookup key. If a message with that key
is found in cmvMessages.properties, the field messageText is set to that message.
Otherwise, messageText is set to the value of messageId.

▪ currentText: display-friendly version of the field current (see above), for example,
"10 mm" or "15 º". The text includes the default units associated with the unit type
specified by the unitType field (see above). See also decimalPlaces, above.

The value of the currentText field is used to populate the Current column of the
table in the Casting Issues, Plastic Issues, or Fabrication Issues dialog. It is also
used to populate the Current value column of the table in the Finishing Operations
tab of the Tolerances and Machining dialog.

▪ suggestedText: display-friendly version of suggested, if suggested is set. Otherwise,
suggestedText is a display-friendly version of suggestedMin and/or suggestedMax, if
one or both is set. The text assumes the default units of the type specified by the
field unitType, and limits the number of decimal places displayed to the value
specified by the field decimalPlaces (see above).

The table below shows several examples of suggestedText values for various
combinations of suggested, suggestedMin, and suggestedMax:

suggested suggestedMin suggestedMax unitType suggestedText

5 Angle 5 º

 3 Length >= 3 mm

 8 Length <= 8 mm

 2 18 Length 2 – 18 mm

10 15 30 Angle 10º

12 12

 2 5 2 – 5

If you want to display advice in the Fabrication Issues dialog for the Sheet Metal process
group, set some or all of the following fields in your call to the dtcMessage function (all
fields are optional except category):

▪ attrbuteId: specify the string that you want to appear in the Sub-Type column. Not
used for Proximity Issues.

▪ messageId: specify the string that you want to appear below the table when the
corresponding table row is selected. The string that appears is the result of
substituting the appropriate values for placeholders in the string specified by
messageId.

▪ secondaryGcd: specify the GCD whose name you want to appear in the column
GCD #2. This is generally the GCD to which the current GCD is too close, or to
which the current GCD bears some problematic proximity relation. Only used for
Proximity Issues.

▪ current: specify the value that you want to appear in the Current column. The
string that appears includes the default units for the type specified by unitType,
and uses, at most, the number of decimal places specified by decimalPlaces.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 219

▪ suggested, suggestedMin, suggestedMax: specify the value or range that you want to
appear in the Suggested column. The string that appears is the value of
suggestedText—see above.

▪ unitType: set this to the unit type that is associated with the values of current,
suggested, suggestedMin, and/or suggestedMax.

▪ decimalPlaces: set this to the maximum number of decimal places to use for the
display of values of current, suggested, suggestedMin, and/or suggestedMax.

▪ category: set this to one of the following, depending on what Issue Type you want
your advice to fall under:

o 'proximityWarning'

o 'bendIssue'

o 'formIssue'

o 'materialIssue'

o 'holeIssue'

If you want to display advice in the Plastic Issues or Casting Issues dialog, set some or all
of the following fields in your call to the dtcMessage function (the fields attributeId and
custom.panelOutput are required; other fields are optional):

▪ attrbuteId: specify the text for the menu-item that you want the user to select in
order to display the advice.

▪ messageId: specify the string that you want to appear below the table when the
corresponding table row is selected. The string that appears is the result of
substituting the appropriate values for placeholders in the string specified by
messageId.

▪ current: specify the value that you want to appear in the Current column. The
string that appears includes the default units for the type specified by unitType,
and uses, at most, the number of decimal places specified by decimalPlaces (see
currentText, above).

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 220

▪ suggested, suggestedMin, suggestedMax: specify the value or range that you want to
appear in the Suggested column. The string that appears is the value of
suggestedText—see above.

▪ unitType: set this to the unit type that is associated with the values of current,
suggested, suggestedMin, and/or suggestedMax.

▪ decimalPlaces: set this to the maximum number of decimal places to use for the
display of values of current, suggested, suggestedMin, and/or suggestedMax.

▪ custom.panelOutput: set this to one of the following:

o 'castingIssue'

o 'plasticIssue'

If you want to display advice in the Tolerances and Machining dialog, set some or all of the
following fields in your call to the dtcMessage function (the fields attributeId and category
are required; other fields are optional):

▪ current: specify the value that you want to appear in the Current Value column. The
string that appears includes the default units for the type specified by unitType,
and uses, at most, the number of decimal places specified by decimalPlaces.

▪ suggested, suggestedMin, suggestedMax: specify the value or range that you want to
appear in the Primary Process column. The string that appears is the value of
suggestedText—see above.

▪ unitType: set this to the unit type that is associated with the values of current,
suggested, suggestedMin, and/or suggestedMax.

▪ decimalPlaces: set this to the maximum number of decimal places to use for the
display of values of current, suggested, suggestedMin, and/or suggestedMax.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 221

▪ category: set this to one of the following:

o 'toleranceWarning'

o 'roughnessWarning'

o 'roughnessRzWarning'

o 'diamToleranceWarning'

o 'positionToleranceWarning'

o 'circularityWarning'

o 'concentricityWarning'

o 'cylindricityWarning'

o 'parallelismWarning'

o 'perpendicularityWarning'

o 'runoutWarning'

o 'totalRunoutWarning'

o 'straightnessWarning'

o 'symmetryWarning'

o 'profileOfSurfaceWarning'

o 'flatnessWarning'

gcdNeedsCam(artifact, coDirectionalEpsilon)

Returns true if none of the isAccessible setup axes for artifact are within

coDirectionalEpsilon degrees of the MainFace's normal direction; returns false

otherwise.

getAngleBetweenPartStripFlowAndSetupAxis(
 holeSetupAxis,
 normalVector,
 eastDirection
)

Calculates the angle between the part strip flow direction and the setup axis passed in,
which is typically derived from a hole on a pierce cam. The function has the following
arguments:

▪ holeSetupAxis: setup axis whose angle is to be calculated

▪ normalVector: main surface's normal vector

▪ eastDirection: main surface's east direction

Note: If the setup axis' direction is within .01 degrees of the normal vector, null is

returned (because the calculation becomes unstable as the hole's setup axis
approaches the same direction as the normal).

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 222

getDistanceToPartFrontEnd(turningAxis, Gcd)

Returns the distance from Gcd's centroid to the turningAxis' front face. The

turningAxis front face is the face that faces in the same direction the turningAxis is

pointing. If Gcd does not have a centroid (for example, if it is an edge), null is returned.

getFlattenedOps(op)

Returns a flattened collection of all of op’s costed child operations.

Example:

numberOfFacing = _

 select count(op) from flattenedOps op where _

 op.simpleName=='Facing'

flattenedOps = getFlattenedOps(op)

getCamAssignments(
 holes,
 codirectionalEpsilon,
 minimumDistanceBetweenHoles,

 rows

)

Returns a collection of CamAssignment objects that assigns each hole in holes to one

cam. The argument rows is a collection of rows from a lookup table (such as

camUnitSizes from the Sheet Metal process group) that specifies size information about
the various types of cams to be assigned.

Holes are placed on the same cam (CamAssignment object) if all the following hold:

▪ All the holes’ setup axes are codirectional, that is, the angle between their setup
axes varies by at most by codirectionalEpsilon.

▪ All holes meet the distance apart requirement, that is, the outer edges of holes
are at least minimumDistanceBetweenHoles apart.

▪ The rectangular size covered by all the holes is not greater than the size of the
cam mounting surface (the product of Cam Face Width and Cam Face Height for the
row that represents the cam). For example, two holes that are 1000mm apart are
not both assigned to a cam that has a mounting surface that measures 500 X
500mm.

The function always chooses a cam with the smallest possible cam mounting
surface possible for a group of holes. It also groups holes together until such a time as
there is no cam mounting surface large enough for them, at which point subsequent
holes are put on a new cam.

isTrue(string)

Returns true if the string passed in is non-null and equals (case insensitive) ‘true’,

‘yes’ or ‘1’.

isNodePrecededBy(node, precedingNodeName)

Returns true if node is preceded by precedingNodeName in the current process routing

or operation sequence; returns false otherwise.

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 223

example:

bool = isPrecededBy(op, 'Drilling')

safeEval(expression, defaultValue)

Returns the result of evaluating expression., if no error occurs during the evaluation. If

any error occurs during that evaluation, defaultValue is returned.

For example, safeEval(12*3, 2)returns 36, while safeEval(12 + bogus, 2) returns

2, if bogus is not a defined expression or variable. See also Examples.

.

safeGet(x, altVal)

Returns x if x is non-null; returns altVal otherwise.

getSlidesAndLiftersForGCDs(
 gcds,
 maxGCDPitch,
 maxActionLength,
 minimumLifterClearance,
 drawDirectionOrthogonalEpsilon
)

Returns a collection with two elements (each of which is itself a collection):

▪ Collection of slides

▪ Collection of lifters

Each slide and lifter has the following fields:

▪ start: location relative to an arbitrary point. The length of the slide or lifter is the

difference between start and end.

▪ end: location relative to an arbitrary point (the same one used by start). The

length of the slide or lifter is the difference between start and end.

▪ artifacts: GCDs handled by this slide or lifter

▪ setupAxis: setup axis used by the GCDs handled by this slide or lifter

The function first determines what setup axis to use for each GCD, by doing the
following:

▪ Sort GCDs based on size (volume), in descending order.

▪ For each GCD, iterate over each of its isAccessible relations.

▪ Check if any of the isAccessible relations has a distance to obstruction equal

to -1, a setup axis that is within drawDirectionOrthogonalEpsilon degrees of

being orthogonal to the draw direction, and a setup axis that has already been
picked for a previous gcd for use in a Slide. If so, use that setup axis and assign
this GCD to a slide. If more than one setup axis satisfies these criteria, use the
one with the smallest length on the isAccessible relation. If more than one

setup axis has the same smallest length, use the one with the smallest
distanceToSolidShadowBorder. Note that the function considers the length to

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 224

be the same if it is literally the same, or if the two setup axes for the two relations
are within 5 degrees of each other or within 5 degrees of being exact opposite
directions (180 degrees). This is because there is some latitude when length is
populated and length for two setup axes pointing in the same direction or in
opposite directions should essentially be the same.

▪ If no setup axis was chosen in the previous step, check if any isAccessible

relations have a distance to obstruction greater than or equal to
(minimumLifterClearance + isAccessible.length) or

distanceToObstruction=-1 with setup axis not within

drawDirectionOrthogonalEpsilon degrees of being orthogonal to the draw

direction and a setup axis that has already been picked for a previous GCD for
use in a lifter. If so, use that setup axis and assign this GCD to a lifter. If more
than one setup axis satisfies these criteria, use the one with the smallest length
on the isAccessible relation.

▪ If no setup axis was chosen in the previous steps and if there exists an
isAccessible relation with distance to obstruction equal to -1 and a setup axis

that is within drawDirectionOrthogonalEpsilon degrees of being orthogonal to

the draw direction, use the setup axis on that relation an assign this GCD to a
slide. If more than one relation/setup axis pair satisfies these criteria, use the one
with the smallest length on the isAccessible relation.

▪ If no setup axis was chosen in the previous steps, check if any isAccessible

relations have a distance to obstruction greater than or equal to
(minimumLifterClearance + isAccessible.length) or

distanceToObstruction=-1 with setup axis not within

drawDirectionOrthogonalEpsilon degrees of being orthogonal to the draw

direction, use the setup axis on that relation and assign this GCD to a lifter. If
more than one relation/setup axis pair satisfies these criteria, use the one with
the smallest length on the isAccessible relation.

▪ If no setup axis was chosen in the previous steps, put the GCD on its own lifter.

All the GCDs passed in are thus grouped together according to their setup axis as found
in step 1 and whether they will be on a lifter or a slide.

For each group of GCDs with the same setup axis, a group of lifters or slides will be
created. Lifters/slides are non-overlapping with a maximum length of
maxActionLength. If the start of a current GCD falls within an existing lifter/slide’s start

+ maxActionLength, then that GCD is added to that existing lifter. Otherwise, a new

lifter/slide is created whose start the GCD’s start. If a GCD is assigned to a lifter/slide
and the GCD’s end runs past the lifter/slide’s start + maxActionLength, then an

additional lifter/slide is created and the GCD is assigned to that additional lifter/slide. In
addition, if the end of one GCD minus the start of the next GCD is greater than
maxGCDPitch then these two GCDs are placed on different lifters/slides. In addition, any

GCD passed in that falls through to the last step above is placed on its own lifter. Note
that this lifter will have no setup axis nor will it have a start/end.

getAssociatedSlides(gcd, slideList, forLengthWise)

Returns a pair of collections, each of which contains all of the slides that are allocated to
either one side or the other side of the specified GCD. If forLengthWise is true, the

function returns all slides that fall on either side of the lengthwise sides of the part. If
forLengthWise is false, the function returns all slides that fall on either side of the

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 225

widthwise sides of the part. The four sides of the part are divided into equal 90 degree
quadrants. Which quadrant (or which side) a slide gets assigned to depends on which
quadrant contains its setup axis.

Example:

numSlidesLengthWiseSide2 = _

 select count(s) from slidesInLengthWiseDirection.second s

numSlidesWidthWiseSide1 = _

 select count(s) from slidesInWidthWiseDirection.first s

numSlidesWidthWiseSide2 = _

 select count(s) from slidesInWidthWiseDirection.second s

slidesInLengthWiseDirection = getAssociatedSlides(gcd, slides, true)

slidesInWidthWiseDirection = getAssociatedSlides(gcd, slides, false)

getAssociatedSlideBundles(gcd, slideBundleList, forLengthWise)

Returns a pair of collections, each of which contains all of the slide bundles that are
allocated to either one side or the other side of the specified GCD. If forLengthWise is

true, the function returns all slide bundles that fall on either side of the lengthwise sides

of the part. If forLengthWise is false, the function returns all slide bundles that fall on

either side of the widthwise sides of the part. The four sides of the part are divided into
equal 90 degree quadrants. Which quadrant (or which side) a slide bundle gets
assigned to depends on which quadrant contains the setup axis that the slide bundle is
accessible from.

Example:

slideBundlesInLengthWiseSide1 = slideBundlesInLengthWiseDirection.first

slideBundlesInLengthWiseSide2 =

slideBundlesInLengthWiseDirection.second

slideBundlesInLengthWiseDirection = _

 getAssociatedSlideBundles(gcd, slideBundles, true)

slideBundles = select x from gcd.childArtifacts x where

isSlideBundle(x)

postMessageAndReturnValue(value, message)

Adds the string message to the message tree as an Info message (associated with a

green dot). Returns value. To aid in internationalization, the actual parameter for

message is typically a variable that is tied to a literal string within a centralized messages

file.

Example:

postMessageAndReturnValue(2.0, successMsg) // in a file shared across

languages

successMsg = 'Calculation was successful' // in a language-specific

file

Cost Scripting Language Reference CMWB User Guide

aPriori Version 2019 R2 226

getClockAngle(normalDirection, noonDirection, clockDirection)

Returns the clock angle. Following is the calculation performed, in Java:

double cos = noonDirection.dot(clockDirection);

Vector3d cross = new Vector3d();

cross.cross(clockDirection, noonDirection);

double sin = normalDirection.dot(cross);

double angle = Math.atan2(sin, cos);

if (angle < 0)angle = 2 * Math.PI + angle;

return Math.toDegrees(angle);

hasField(obj, fieldName)

Returns true if the object has a field by the specified name; returns false otherwise.

getFinishedArea(plantRMillPercentile, gcd, op)

Returns the sum of all finished areas of all operations that lie on the specified GCD that
have an opDiameter that is less than or equal to the selected opDiameter. The selected

opDiameter is selected based on the plantRMillPercentile in conjunction with all the

diameters of all operations that lie on the specified GCD.

Example:

GetAreaFinished3(millSize) = {

 getFinishedArea(plant.smallRMillPercentile, gcd, op) _

 if (millSize == SMALLEST_MILL)

 getFinishedArea(plant.largeRMillPercentile, gcd, op) _

 if (millSize == LARGEST_MILL)

 getFinishedArea(plant.middleRMillPercentile, gcd, op) _

 if (millSize == MIDDLE_MILL)

}

aPriori Version 2019 R2 227

6 Common Task
Examples

This chapter contains examples of several common CMWB tasks. All the
examples center around a sample custom process, AbrasiveJet Cut in the Sheet
Metal process group. AbrasiveJet Cut, as presented here, is almost identical to
the starting point process Waterjet Cut. The examples in this chapter use
AbrasiveJet Cut to illustrate how a process like Waterject Cut might have been
created, starting from a copy of a similar process, Laser Cut, in the same process
group.

This chapter includes the following topics:

▪ Adding a New Process to a Process Group

▪ Adding New Processes and Operations to Templates

▪ Defining and Modifying Machine Types

▪ Modifying Machine Selection

▪ Adding Feasibility Rules

▪ Adding New Plant Variables

▪ Adding New Process Setup Options

▪ Adding Lookup Tables

▪ Modifying Taxonomy Modules

▪ Adding and Modifying Library Modules

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 228

Adding a New Process to a Process
Group
This section contains examples of adding a new process to a process group as a
starting point for the full implementation of a custom process. The first procedure shows
how to create an unpopulated process using the File menu. The second procedure
shows how to copy an existing process to provide a more developed starting point. The
other main steps involved in fully implementing a custom process are covered in
subsequent sections of this chapter.

Creating a New Process from Scratch

Use this procedure if you want to create a completely new process with minimal starting
data. This creates the costTaxonomy and machineSelectionRule CSL Modules, and
populates them with the basic equations of a standard cost taxonomy, along with the
necessary library file references to start configuring. Optionally you can also specify to
create an empty machine table that has an identical format to one specified at creation
time (no machines will be populated in the new table).

1 From the File menu, click Create New Process...

2 Follow the prompts in the resulting Create New Process window to provide:

• VPE Name where the new process should be created.

• Process Group where the new process should be created

• The Name of the new process

• (Optional) Whether or not to create an empty machine table with the same
structure as the one specified

3 Click OK when done.

4 Continue to develop the new process using the later sections in this chapter.

5 When the process is complete, click Publish Cost Model and VPE from the File menu, or

click in the toolbar.

Creating a New Process from an Existing Process

This example creates a custom process, AbrasiveJet Cut, which is copied from Laser
Cut. AbrasiveJet will mimic the starting point process Waterjet Cut; here we copy from
Laser Cut just as Waterjet Cut might have been created by starting from a copy of Laser
Cut.

When you copy a process, you create copies of the original process’s associated CSL
modules, process setup options, data tables, and metadata tables. Optionally, you also
create copies of the original process’s associated operations (including their associated
modules, setup options, data, and metadata).

The section includes the following subsections:

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 229

▪ Copying the Process

▪ Renaming the Operations

▪ Adding Operations

For more information on these tasks, see Creating and Deleting Processes, Operations,
and Branch Nodes in the chapter Working with Cost Model Logic.

Copying the Process

Follow these steps to make a copy of Laser Cut:

1 In the navigation pane, expand Processes, GCDs & Operations, right-click on Laser Cut,
and select Copy Process/Operation....

2 In the Copy Process dialog, ensure that all checkboxes are checked.

By checking Create New Copies of CSL Files, you ensure the creation of new copies of
the CSL modules associated with the copied process. If you uncheck this checkbox,
the copy will use all the same modules as the copied process.

By checking the other checkboxes, you ensure the creation of copies of the
operations associated with the copied process. Following Waterjet Cut, the
AbrasiveJet Cut process will have analogs of Laser Cutting operations for the GCDs
Blank, ComplexHole, and SimpleHole. (It will also have operations for cutting Edge
child GCDs of blanks and complex holes, but these are added in a separate step.)

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 230

3 In the Copy Process dialog, enter AbrasiveJet Cut in the New Name Field, and click OK.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Renaming the Operations

For each operation copy, do the following:

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 231

1 In the navigaiton pane, right click on the operation, and select Rename....

2 In the Rename Process dialog, enter Waterjet Cutting in the New Name field.

3 Click OK.

4 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding Operations

To calculate cut times and pierce times for each GCD of the current part, Laser Cut uses
operations on the blank, simples hole, and complex hole GCDs. As with Laser Cut,
AbrasiveJet Cut uses an operation on the simple hole GCD to calculate pierce times and
cut times for each simple hole. But unlike Laser Cut, AbrasiveJet Cut uses blank and
complex hole operations to calculate pierce times only; AbrasiveJet Cut uses an
operation on the edge GCD to calculate cut times for each edge of the blank and each
edge of each complex hole. So we must add two new operations to AbrasiveJet Cut.

The following tables show which times are calculated by each processes and operation:

Laser Cut Process SimpleHole
Operation

Blank
Operation

ComplexHole
Operation

Traverse Time X

Pierce Time X X X

Cut Time X X X

AbrasiveJet
Cut

Process SimpleHole
Operation

Blank
Operation

Blank
Edge
Operation

ComplexHole
Operation

ComplexHole
Edge
Operation

Traverse Time X

Pierce Time X X X

Cut Time X X X

For the AbrasiveJet Cutting operation under Blank, as well as for the AbrasiveJet Cutting
operation under ComplexHole, do the following:

1 Right-click on the operation, and select New > Operation....

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 232

2 Resize the dialog box, if necessary, in order to make the operation pathnames
entirely visible in the Parent Process/Operation filed. Ensure that this field is set to the
operation you right-clicked on.

3 In the New Operation dialog, click the GCD field and select Edge.

4 Click OK.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding New Processes and Operations
to Templates
The example in this section shows how to modify the templates in the Sheet Metal
process group in order to incorporate routings for the sample, custom process
AbrasiveCut (see Adding a New Process to a Process Group).

When you add a new process to a cost model, you typically add associated operations
as well. This section includes the following subsections:

▪ Navigating to and Modifying Templates

▪ Modifying the Process-level Routings

▪ Modifying the Operation-level Routings

For more information on templates, see Working with Templates in the chapter Working
with Cost Model Logic.

Navigating to and Modifying Templates

Follow these steps to navigate to and modify the template for a given GCD type:

1 In the navigation pane, expand Templates.

Double click the desired GCD type. The template text appears in the editing pane. (A
graphical representation of the template may appear in the bottom part of the editing
pane. Show Info Panel in the View menu controls its visibility. You may have to drag the

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 233

top border of the Info Panel up from near the bottom of the editing pane in order to
make the Info Panel contents visible.)

2 Select Override Object from the Edit menu, or click the override icon, , in the
toolbar.

3 Modify the text of the module in the editing pane.

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Modifying the Process-level Routings

This section shows you how to add process-level routings that are analogous to those of
Laser Cut. Modify the AbrasiveJet Cut Component template as follows:

1 Find the line that starts with the following:

 'Sheet Metal' ::=

2 In that line, select the following portion:

'[CTL]/Laser/[Bend]' |

3 Type control-c to copy the selected text.

4 In that same line, click immediately before the following:

'[CTL]/Turret/[Bend]'

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 234

5 Type control-v to paste the copied text. This adds a new alternative routing to the
top-level template node.

6 Replace Laser with AbrasiveJet in the newly pasted text portion.

7 Copy the line that starts with the following (copy the entire line):

 #'[CTL]/Laser/[Bend]' ::=

8 Paste it as a new line. This line will define the alternative routing that you added in
step 5.

9 In the new line, change Laser to AbrasiveJet throughout.

10 Find the line that starts with the following:

‘Cutting’ ::=

11 Click at the end of that line and enter a vertical bar, |, followed by the AbrasiveJet
process node name:

 | 'AbrasiveJet Cut':'Sheet Metal'

You can copy the node name ('AbrasiveJet Cut':'Sheet Metal') from the Template

Node Name field of the Node Attributes tab for the AbrasiveJet Cut process.

Modifying the Operation-level Routings

This section shows you how to add operation-level routings that are analogous to those
of Laser Cut, as well as a routing for the edge operation AbrasiveJet Cutting.

Modify the AbrasiveJet Cut Blank, ComplexHole, and SimpleHole templates as follows:

1 Find the line that starts with the following:

'Sheet Metal' ::=

2 In that line, click immediately before the following line:

'Turret Press':'Turret Press':'Sheet Metal'

3 Enter the operation node name followed by a vertical bar, |:

 'AbrasiveJet Cutting':'AbrasiveJet Cut':'Sheet Metal' |

You can copy the node name from the Template Node Name field of the Node Attributes
tab for the blank and complex hole AbrasiveJet Cutting operations.

This causes the blank, complex hole, or simple hole AbrasiveJet Cutting operation to be
assigned to a part’s blank, complex hole, or simple hole if the process AbrasiveJet Cut
has been assigned to the part.

Modify the AbrasiveJet Cut Edge template as follows:

1 Add the following line:

'Sheet Metal' ::= 'AbrasiveJet Cut' [Machining] ['Part Assembly']

2 Below that, add the following, all on one line:

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 235

 'Abrasivet Cut' ::=

 'AbrasiveJet Cut:AbrasiveJet Cutting//Blank:AbrasiveJet

Cutting//Edge' |

 'Abrasiveet Cut:AbrasiveJet Cutting//

 ComplexHole:AbrasiveJet Cutting//Edge'

You can copy these node names from the Fully-Qualified Name field of the Node
Attributes tab for the edge AbrasiveJet Cutting operations.

This causes the edge operation AbrasiveJet Cutting to be assigned to a part’s edge if
the blank, complex hole, or simple hole operation AbrasiveJet Cutting has been
assigned to the edge’s parent GCD (blank, complex hole, or simple hole). For more
information on the edge operation, see Adding Operations.

Defining and Modifying Machine Types
This section provides an example of defining a machine type for a new process. Once
you’ve created or modified the machine type, you can use VPE Manager to create or
modify the machine table that uses that type. Each line of the machine type table defines
a machine attribute, and corresponds to a column of the machine table.

The example uses the sample custom process AbrasiveJet Cut (see Adding a New
Process to a Process Group). The initial machine type definition mimics the starting point
process Waterjet Cut in the Sheet Metal process group. This section also shows how to
perform two modifications of this initial definition, in order to support further
customization.

This section contains the following subsections:

▪ Defining a Machine Type for a New Process

▪ Modifying a Machine Type—Padding Cycle Time

▪ Modifying a Machine Type—Preferring One Class of Machines Over Another

For more information on machine types, see Working with Machine Metadata in the
chapter Working with Cost Model Data and Metadata.

Defining a Machine Type for a New Process

This section shows how to create a machine type definition for AbrasiveJet Cut. Follow
these steps to define a machine type for the new process:

1 Use the VPE Manager to delete all the machines associated with AbrasiveJet Cut.
(When Laser Cut was copied, all its associated machines were copied.)

2 In the CMWB navigation pane, double click the AbrasiveJet Cut process. If the
process is already open in the editing pane, close it and reopen it.

3 Click the Machine Type tab in the editing pane.

4 Click to remove the table.

5 Click to add a new, blank table.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 236

6 Type control-s to save the table and populate the new table with required fields
(averageUtilization, description, goodPartYield, and so forth).

7 Double click the Laser Cut process in the navigation pane, and click the Machine Type
tab in the editing pane.

8 Select all the rows of the Laser Cut machine type table, and type control C to copy
the selected rows.

9 Click the AbrasiveJet Cut tab at the top of the editing pane, click in the blank field at
the bottom of the table, and type control-c to paste.

10 Click the column heading Field Name to alphabetize.

11 Remove duplicate rows. The required fields will each appear twice, once in editable
form (marked with pencil icon) and once in non-editable form—the editable ones
should be deleted.

12 Add the rows in the table below. Double-click a cell to enter a value. In the Unit Type
Name field, when you select an item from the dropdown list, a value for the Unit field
appears automatically.

Field Name Description Default
Value
Text

Unit Type
Name

Unit Property
Type
name

Notes

abrasiveFlowRate Flow rate of

the abrasive

into the

mixing

chamber.

.34 kg/min kilogram /

minute

double

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 237

mixingTubeDiam Diameter of

the mixing

tube.

.762 Length millimeter double

nozzleDelay Extra time

required at

pierce points

to account for

the nozzle

turning on and

off.

3.2 Time second double

numNozzles Number of

nozzles on

this machine

available for

cutting

multiple parts

at once.

1 double

optimizationFactor Factor used to

distinguish

between

optimization

software used

by machine

manufacturers.

1 double

orificeDiam Diameter of

the jeweled

orifice.

.356 Length millimeter double

pressure 379.21 Pressure newton /

millimeter^2

double

13 Remove the following rows:

o numHeads

o shuttleTime

o toleranceFactor

14 In the Default Value column, add the following defaults:

o numScrapsCutPerSheet: 2

o sheetLengthTrimStrip: 5

o sheetWidthTrimStrip: 5

o smallFeatureFeedRadius: 12.7

o smallFeatureThicknessRatio: 0

15 Select Save from the File menu, or click in the toolbar, to save your changes.

16 Click the icon to the left of the table name in the editing pane. The column
properties and column groups page appears in a new tab in the editing pane.

The data table column names appear under Available Fields and Displayed Fields.
These are the displayed names that correspond to the metadata table values of Field
Name. Only those under Displayed Fields are displayed in VPE Manager and aPriori
end user data tables.

To view and modify a column’s properties, select the column name from Available
Fields or Displayed Fields. The following fields appear under Column Properties

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 238

o Name: value of Field Name for this column.

o Display Name: displayed name of the column.

o Formatter: controls the format of displayed values.

o Parent Group: column group in which this column appears. In VPE Manager
tables and aPriori end user tables, column groups can be expanded by
clicking the plus sign.

To change which columns are displayed, select a column or group and use the left
and right arrows, and . Note that if you select a group and click the left arrow, all
the columns in that group are moved out of Display Fields. Note also that whenever
you move a column into Display Fields, you must re-specify its Parent Group.

To change the order in which columns appear in VPE Manager and aPriori end user
tables, select a column or group, and use the up and down arrows, and .

Create and delete column groups with and .

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 239

17 Select Save from the File menu, or click in the toolbar, to save your changes.

18 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Modifying a Machine Type—Padding Cycle Time

If the use of some machines is associated with a known constant contribution to cycle
time, you can define a machine attribute to support the specification of this constant.
Taxonomy modules can then access the current machine in order to add the value to
cycle time (see Padding Cycle Time by Adding a Constant). See also Adding a Setup
Option—Padding Cycle Time and Adding Plant Variables—Padding Cycle Time.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 240

For the sample, custom process AbrasiveJet Cut, follow these steps to add such an
attribute to the machine type:

1 Double click the AbrasiveJet Cut process in the navigation pane, and click the
Machine Type tab in the editing pane.

In this example, the process is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

2 Click in the empty Field Name column of the last line of the table.

3 Enter the following information in the following columns:

o Field Name: cycleTimeAdditiveAdjustment

o Default Value Text: 0

o Unit Type Name: Time

o Property Type Name: double

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Padding Cycle Time by Adding a Constant for an example of using this attribute in a
CSL taxonomy module.

Modifying a Machine Type—Preferring One Class of Machines
Over Another

If you want machine selection for a particular process to prefer on-site machines to
machines located at a remote facility, for example, you can define a string-valued
machine attribute called, for example, isOnSite, to support such a selection

requirement. The process’s machine selection module can then access this attribute in
order to distinguish between on-site and off-site machines (see Preferring One Class of
Machines Over Another).

For the sample, custom process AbreasiveJet Cut, follow these steps to add such an
attribute to the machine type:

1 Double click the AbrasiveJet Cut process in the navigation pane, and click the
Machine Type tab in the editing pane.

In this example, the process is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

2 Click in the empty Field Name column of the last line of the table.

3 Enter the following information in the following columns:

o Field Name: isOnSite

o Default Value Text: false

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 241

o Property Type Name: string

4 Select Save from the File menu, or click in the toolbar, to save your changes.

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Preferring One Class of Machines Over Another for an example of using this
attribute in a CSL machine selection module.

Modifying Machine Selection
This section shows how to modify the machine selection module for AbrasiveJet Cut
(which is copied from Laser Cut—see Adding a New Process to a Process Group), so
that it mimics Waterjet Cut. The section also illustrates further customizing machine
selection to prefer user-defined machines.

This section includes the following subsections:

▪ Removing unwanted machine checks

▪ Preferring One Class of Machines Over Another

For more information on machine selection, see Machine Selection in the chapter
Working with Cost Model Logic.

Removing unwanted machine checks

Suppose that we want any machine selected for AbrasiveJet Cut to pass the following
two checks in order to ensure that the current part fits on the selected machine:

▪ Maximum part width check: blank width is less than or equal to the machine’s
maximum bed width.

▪ Maximum part length check: blank length is less than or equal to machine’s
maximum bed length.

In addition, let’s say that we want machine selection to do the following:

▪ Select the default machine if it passes these checks.

▪ Select the machine with the lowest overhead that passes the tests, if the default
machine does not pass these checks.

Laser Cut machine selection is very similar. The difference is that Laser Cut machine
selection includes two additional checks, a maximum thickness check and a minimum
thickness check. AbrasiveJet Cut has related checks, but they are performed in the
feasibility module, since they depend on criteria that are independent of any particular
machine’s characteristics (see Adding Feasibility Rules).

Follow these steps to modify machine selection for the AbrasiveJet Cut process in order
to eliminate the unwanted checks:

1 In the navigation pane, expand Processes, GCDs & Operations and double-click the
AbrasiveJet Cut process.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 242

2 In the editing pane, select the CSL tab, and click on the folder icon, , next to
machineSelectionRule.

The module text appears in the editing pane.

In this example, the module is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

3 Remove and MaxThicknessCheck and MinThicknessCheck from the query

expression at the beginning of the module, resulting in the following formula:

 machine = select first(m) from machines m _

 where MaxPartWidthCheck and MaxPartLengthCheck _

 order by isDefaultMachine(m) desc, overheadCost(m)

This query orders the feasible machines by the result of isDefaultMachine (a

function defined below the query in this module). The result of isDefaultMachine is

either true or false. In the ascending order for boolean values, false precedes

true, so the order is specified as descending. That way the default machine (the one

for which true is returned) appears first, and the rest of the machines (the ones for

which false is returned) follow it in the ordering.

Within that ordering, the query orders the machines by the result of overheadCost
(another function defined below the query).

The query selects the first machine in this overall order: the default machine if it is
feasible, and the one with the lowest overhead otherwise.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 243

4 Remove all the code following the two rules referred to by the query, resulting in the
following code for the whole module:

 machine = select first(m) from machines m _

 where MaxPartWidthCheck and MaxPartLengthCheck _

 order by isDefaultMachine(m) desc, overheadCost(m)

 isDefaultMachine(m) = (m == defaultMachine)

 //account for both types of machine/overhead cost in the system

 overheadCost(m) = _

 (m.workCenterLaborRate * m.workCenterOverheadMultiplier) + _

 m.workCenterOverheadRate

 Rule MaxPartWidthCheck: blank.serWidth <= m.bedWidth

 Message MaxPartWidthCheck: m.name + _

 ' is not feasible. The blank width (' + roundBlankWidth + _

 ' mm) is greater than max bed width of the machine (' + _

 machineBedWidth + ' mm)'

 roundBlankWidth= roundEps(blank.serWidth, 0.01)

 machineBedWidth = m.bedWidth

 Rule MaxPartLengthCheck: blank.serLength <= m.bedLength

 Message MaxPartLengthCheck: m.name + _

 ' is not feasible. The blank length (' + roundBlankLength + _

 ' mm) is greater than max bed length of the machine (' + _

 machineBedLength + ' mm)'

 roundBlankLength= roundEps(blank.serLength, 0.01)

 machineBedLength = m.bedLength

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 244

Preferring One Class of Machines Over Another

Suppose that, for Abrasive Cut, you want to modify the machine selection to prefer on-
site machines (as opposed to machines located at a remote facility). And suppose that
(in order to support this) machines have a string-valued attribute, isOnSite, which is

true if the machine on site and false otherwise (see Modifying a Machine Type—

Preferring One Class of Machines Over Another).

Follow these steps to modify machine selection for the AbrasiveJet Cut process so that it
prefers customer-defined machines over predefined machines:

1 In the navigation pane, expand Processes, GCDs & Operations and double-click the
AbrasiveJet Cut process.

2 In the editing pane, select the CSL tab.

3 Click on the folder icon, , next to machineSelectionRule.

The module text appears in the editing pane.

In this example, the module is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

4 Modify the query that appears in the module. The unmodified query is as follows (see
Removing unwanted machine checks):

 machine = select first(m) from machines m _

 where MaxPartWidthCheck and MaxPartLengthCheck _

 order by isDefaultMachine(m) desc, overheadCost(m)

To prefer all on-site machines over all off-site machines, modify the query so that it
appears as follows:

 machine = select first(m) from machines m _

 where MaxPartWidthCheck and MaxPartLengthCheck _

 order by isOnSite(m) desc, overheadCost(m)

 isOnSite(m) = (m.isOnSite == true)

This query orders the feasible machines by the result of isOnSite (a function

defined below the query in this module). The result of isOnSite is either true or

false. In the ascending order for boolean values, false precedes true, so the

order is specified as descending. That way on-site machines (the ones for which
true is returned) appear first, and the rest of the machines (the ones for which

false is returned) follow them in the ordering.

Within that ordering, the query orders the machines by the result of overheadCost

(another function defined below the query).

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 245

 To prefer on-site machines to off-site machines with equal overhead, modify the
query so that it appears as follows:

 machine = select first(m) from machines m _

 where MaxPartWidthCheck and MaxPartLengthCheck _

 order by overheadCost(m), isOnSite(m) desc

 isOnSite (m) = (m.isOnSite == true)

This query orders the feasible machines by overhead cost, and within that ordering,
on-site machines appear first.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Adding Feasibility Rules
This section provides an example of adding feasibility rules to a process. The example
uses the custom process, AbrasiveJet Cut (see Adding a New Process to a Process
Group). Following Waterjet Cut, this new process will include a feasibility module that
performs the follow checks:

▪ Maximum material thickness check: blank thickness is less than or equal to the
maximum blank thickness (as specified by a plant varaible).

▪ Minimum material thickness check: blank thickness is greater than or equal to the
minimum blank thickness (as specified by a plant varaible).

▪ Maximum bundle thickness check: thickness of the stack of blanks to be
processed is less than or equal to the maximum bundle thickness (as specified
by a plant varaible).

Note that a complete implementation of the AbrasiveJet Cut process must include
operation-level feasibility rules as well as the process-level feasibility rules described
here (see the operation-level feasibility modules for Waterjet Cut).

For more information on feasibility rules, see Process and Operation Feasibility in the
chapter Working with Cost Model Logic.

Follow these steps to define the process-level feasibility rules for AbrasiveJet Cut:

1 In the navigation pane, expand Processes, GCDs & Operations and double-click the
AbrasiveJet Cut process.

2 In the editing pane, select the CSL tab.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 246

3 Click on the folder icon, , next to routingRule.

An empty feasibility module appears in the editing pane. This is a copy of Laser Cut’s
empty feasibility module.

In this example, the module is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

4 Enter the following code into the editing pane:

 import libAbrasiveJetUtilities.csl

 Rule MaxThicknessCheck: blank.thickness <=

plant.waterjetMaxPartThickness

 Message MaxThicknessCheck: _

 'Material thickness is too thick for Waterjet Cutting.'

 Rule MinThicknessCheck: blank.thickness >=

plant.waterjetMinPartThickness

 Message MinThicknessCheck: _

 'Material thickness is too thin for Waterjet Cutting.'

 Rule MaxBundleThicknessCheck: _

 GetBundleThickness <= plant.waterjetMaxPartThickness

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 247

 Message MaxBundleThicknessCheck: _

 'Part stack thickness is too thick for Waterjet Cutting.'

In the code above, blank is a CSL standard input that represents the blank from

which the current part is created. The expression blank.thickness designates

the thickness of a single blank. The expressions
plant.waterjetMaxPartThickness and plant.waterjetMinPartThickness

designate the values of the plant variables waterjetMinPartThickness and
waterjetMinPartThickness.

The formula GetBundleThickness must be defined in the library

libAbrasiveJetUtilities.csl—see Creating a New Library.

For more information on CSL, see CSL Language Overview in the chapter
Working with Cost Model Logic.

Adding New Plant Variables
This section provides an example of adding new plant variables (also known as cost
model variables) to a process group. The example uses the sample custom process
AbrasiveJet Cut, which is copied from Laser Cut, and will mimic Waterjet Cut (see
Adding a New Process to a Process Group). An additional example is also included, to
support a further customization related to cycle time padding.

This section includes the following subsections:

▪ Adding Plant Variables for a New Process

▪ Adding Plant Variables—Padding Cycle Time

For more information on plant variables, see Working with Plant Variables in the chapter
Working with Cost Model Data and Metadata.

Adding Plant Variables for a New Process

Follow these steps to add the AbrasiveJet plant variables:

1 In the navigation pane, expand Global Cost Model Information, and double click Cost
Model Variables.

2 In the editing pane, scroll to the bottom, and double click the cell underneath New:.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 248

3 Enter the information in the table below. Double-click a cell to enter a value. In the
Unit Type Name field, when you select an item from the dropdown list, a value for the
Unit field appears automatically.

Varaible Name String
Value

Unit Type
Name

Unit Notes

abrasiveJetAbrasiveCost .7275 CostPerMass US Dollar /
kilogram

Cost of garnet
abrasives for use in
AbrasiveJet Cutting.
Used to calculate
expendable tooling
cost.

abrasiveJetCornerAjustmentFactor .09 Time second Additional cycle time
applied to account for
the extra time required
to stop the feed rate at
each corner during
AbrasiveJet Cutting.

abrasiveJetCutTimeAdjustmentFactor 1.4 Adjustment applied to
AbrasiveJet cut time to
account for the extra
time required for
acceleration or
deceleration to the
required feed rate.

abrasiveJetInsertCost 155 Currency US Dollar Cost of inserts for use
in AbrasiveJet Cutting.
Used to calculate
expendable tooling
cost.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 249

abrasiveJetInsertLife 400 hr hour Life in hours of inserts
for use in AbrasiveJet
Cutting. Used to
calculate expendable
tooling cost.

abrasiveJetKerf .6858 Length millimeter Kerf width for an
AbrasiveJet Cut part.

abrasiveJetMaxMixingTubeDiameter 1.524 Length millimeter Maximum possible
diameter of the
abrasiveJet mixing
tube.

abrasiveJetMaxOrificeDiameter 0.4 Length millimeter Maximum possible
diameter of the
abrasiveJet jeweled
orifice.

abrasiveJetMaxPartThickness 254 Length millimeter Maximum part
thickness for
AbrasiveJet Cutting.
AbrasiveJets can
actually cut thicker
parts but the cutting
model breaks down
above this threshold.

abrasiveJetMinPartThickness .03 Length millimeter Minimum part
thickness for
AbrasiveJet Cutting.

abrasiveJetSmallEdgeThreshold .005 Ratio of individual
edge segment length
to total perimeter
length below which an
edge is considered
small and must be cut
using a slower feed
rate.

abrasiveJetWallThicknessToDepthRatio .003 Minimum allowable
ratio of wall thickness
to part thickness for an
AbrasiveJet Cut part.

Adding Plant Variables—Padding Cycle Time

This section adds a plant variable to support cycle time padding. This variable can be
used directly in a taxonomy module (see Padding Cycle Time by Adding a Constant), or
to supply a default value for a process setup option (see Adding a Setup Option—
Padding Cycle Time). See also Modifying a Machine Type—Padding Cycle Time.

Follow these steps to define the variable:

1 In the navigation pane, expand Global Cost Model Information, and double click Cost
Model Variables.

2 In the editing pane, scroll to the bottom, and double click the cell underneath New:.

3 Enter a new line in the table, specifying the following information:

o Field Name: AbrasiveJetCycleTimeAdditiveAdjustment

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 250

o String Value: 0

o Unit Type Name: Time

Adding New Process Setup Options
This section illustrates adding new process setup options to a process. The examples in
this section use the custom process AbrasiveJet Cut (see Adding a New Process to a
Process Group). The first two examples mimic setup options for the process Watercut
Jet. The last example illustrates further customization. The section contains the following
susbsections:

▪ Adding a Setup Option—Using CSL, Formula, and User Modes

▪ Adding a Setup Option—Using List Mode to Access a Lookup Table

▪ Adding a Setup Option—Padding Cycle Time

For more information on process setup options, see Working with Process Setup
Options in the chapter Working with Cost Model Data and Metadata.

Adding a Setup Option—Using CSL, Formula, and User Modes

This section contains an example of adding a setup option to a process. Following
Waterjet Cut, this new process will include a setup option, bundleCount, for the number

of blanks that are stacked and processed simultaneously.

Follow these steps to create the setup option:

1 In the navigation pane, double-click AbrasiveJet Cut; in the editing pane, click the
Process Setup Optoins tab.

In this example, the process is new, and so is editable without an explicit override.
For inherited objects, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

2 Scroll to the bottom of the editing pane, and click . Text boxes and a table for a
new setup option appear.

Each line of the table will define an end-user input mode. You will define three
modes:

o Default mode: uses the default bundle count 1. This value is specified by a
simple CSL expression, consisting of just a numerical literal. (See Adding a

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 251

Setup Option—Padding Cycle Time for another example of using CSL mode
in a process setup option.)

o Computed mode: uses a computed bundle count. This value is specified by
the CSL formula (defined in the process taxonomy module or a supporting
library module) bundleAbrasiveJetCountComputed. (See

bundleWaterjetCountComputed in the library module

libWaterjetUtilities.csl.)

o User override mode: This value is entered by the end user.

3 Add a line to the table, specifying the following column values:

o Mode Name: aDefaultValue

o Type: CSL

o Display Text: Default Value

o Expression: 1

4 Add a second line to the table, specifying the following column values:

o Mode Name: aaComputedValue

o Type: Formula

o Display Text: Computed Value

o Expression: bundleAbrasiveJetCountComputed

5 Add a third line to the table, specifying the following column values:

o Mode Name: aaaUserOverride

o Type: User

o Display Text: User Override

o Min Value: 1

o Max Value: bundleAbrasiveJetCountComputed

6 Enter the following information into the text boxes:

o Name: bundleCount

o Display Text: Number of Parts in Stack

o Description: Parts can be stacked to cut multiples at once.
Maximum number of parts is determined by part thickness and

the maximum effective stack thickness without sacrificing part

quality.

o Default Mode Name: aDefaultValue

o Decimal Places: 1

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 252

7

Select Save from the File menu, or click in the toolbar, to save your changes.

8 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Adding a Setup Option—Using List Mode to Access a Lookup
Table

This section contains an example of adding a setup option that allows the user to select
from a list of values that are based on a lookup table. The example uses the custom
process, AbrasiveJet Cut, which is copied from Laser Cut, and is almost identical to
Waterjet Cut (see Adding a New Process to a Process Group). Following Waterjet Cut,
this new process will include a setup option, nozzleType, that allows the user to specify

a the type of nozzle in use for the current part. The nozzle characteristics affect part
cost, and are contained in a lookup table (see Adding Lookup Tables). The lookup table
is accessed by the process taxonomy module.

Follow these steps to create the setup option:

1 In the navigation pane, double-click AbrasiveJet Cut; in the editing pane, click the
Process Setup Optoins tab.

In this example, the process is new, and so is editable without an explicit override.
For inherited objects, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

2 Scroll to the bottom of the editing pane, and click . Text boxes and a table for a
new setup option appear.

The table will define the end-user input mode, LIST mode, which provides a list
of alternative values from which the user can choose. The alternatives are
specified by a select expression (that is, a CSL query expression--see CSL
Language Overview in the chapter Working with Cost Model Logic) that queries a
lookup table. There will be one alternative for each lookup table entry.

3 Add a line to the table, specifying the following column values:

o Mode Name: UserOverride

o Type: List

o Display Text: Nozzle Type

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 253

o Expression: select k.nozzleType from tblAbrasiveJetAbrasiveNozzle
k order by k.nozzleCost asc

o Default Value: ‘Mid-Life Composite Carbide’

4 Enter the following information into the text boxes:

o Name: nozzleType

o Default Mode Name: UserOverride

5 Select Save from the File menu, or click in the toolbar, to save your changes.

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Adding a Setup Option—Padding Cycle Time

This section contains an example of adding a setup option to a process. The example
uses the sample custom process AbrasiveJet Cut, which is copied from Laser Cut and
mimics Waterjet Cut (see Adding a New Process to a Process Group). Unlike Waterjet
Cut, this new process will include a setup option, cycleTimeAdditiveAdjustment, for a

value to be added to the process cycle time as an adjustment (see Padding Cycle Time
by Adding a Constant). See also Modifying a Machine Type—Padding Cycle Time and
Adding Plant Variables—Padding Cycle Time.

Follow these steps to create the setup option:

1 In the navigation pane, double-click AbrasiveJet Cut; in the editing pane, click the
Process Setup Optoins tab.

In this example, the process is new, and so is editable without an explicit override.
For inherited objects, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

2 Scroll to the bottom of the editing pane, and click . Text boxes and a table for a
new setup option appear.

Each line of the table will define an end-user input mode. You will define two
modes:

o Default mode: uses the default bundle count specified by the plant variable
cycleTimeAdditiveAdjustment. This value is specified by the CSL

expression plant. cycleTimeAdditiveAdjustment.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 254

o User override mode: This value is entered by the end user.

3 Add a line to the table, specifying the following column values:

o Mode Name: aDefaultValue

o Type: CSL

o Display Text: Default Value

o Expression: plant.cycleTimeAdditiveAdjustment

4 Add a second line to the table, specifying the following column values:

o Mode Name: aaUserOverride

o Type: User

o Display Text: User Override

o Default Value: 0

5 Enter the following information into the text boxes:

o Name: cycTimeAdditiveAdjustment

o Display Text: Cycle Time Additive Adjustment

o Description: Value to be added onto cycle time as padding.

o Default Mode Name: aDefaultValue

o Unit Type: Time

o Decimal Places: 1

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Padding Cycle Time by Adding a Constant for an example of using this process
setup option in a CSL module.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 255

Adding Lookup Tables
This section contains an example of adding a lookup table to a process. The example
uses the custom process, AbrasiveJet Cut (see Adding a New Process to a Process
Group). AbrasiveJet Cut (following Waterjet Cut) will use a lookup table, nozzleType, to

store the cost and lifetime for various types of nozzles.

This section contains the following subsections:

▪ Adding a Lookup Table Definition

▪ Adding a Lookup Table

For more information on lookup tables, see Working with Lookup Tables in the chapter
Working with Cost Model Data and Metadata.

Adding a Lookup Table Definition

Before you create the new lookup table, you must create a new lookup table definition
(the metadata for the lookup table). Follow these steps:

1 In the CMWB navigation pane, right-click and select New > Lookup Table Definition. The
New Lookup Table Definition dialog appears.

2 Enter the tblAbrasiveJetAbrasiveNozzle in the Name field, and click OK. An empty

definition table appears in the editing pane.

3 Add a line to the table, specifying the following column values (double click in a table
cell to add a value):

o Field Name: nozzleCost

o Unit Type Name: Currency

o Property Type Name: double

4 Add a second line to the table, specifying the following column values:

o Field Name: nozzleLife

o Unit Type Name: hr (Enter this value by typing, rather than by selecting from

the dropdown list.)

o Property Type Name: double

5 Add a third line to the table, specifying the following column values:

o Field Name: nozzleType

o Property Type Name: string

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 256

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 Click the icon to the left of the table name in the editing pane. The column
properties and column groups page appears in a new tab in the editing pane. Click
Nozzle Type under displayed fields, and click the up arrow, , to move Nozzle Type to
the top.

8 Select Save from the File menu, or click in the toolbar, to save your changes.

9 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Adding a Lookup Table

Now that you have a new lookup table definition, you can create the new lookup table.
Follow these steps:

1 In the CMWB navigation pane, double click the AbrasiveJet Cut process.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 257

2 Click the Lookup Tables tab in the editing pane.

In this example, the process is new, and so is editable without an explicit override.
For inherited objects, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

3 Click to add a new table. Fields for the new table appear in the editing pane.

4 Enter tblAbrasiveJetAbrasiveNozzle in the Name field.

5 Select tblAbrasiveJetAbrasiveNozzle in the Meta Type field.

6 Select Save from the File menu, or click in the toolbar, to save your changes. The
fields for the new table may be moved, so that they appear alphabetically with any
other tables listed in the editing pane.

7 Click the folder icon, , above the Name field. The new, empty table appears in a
new tab in the editing pane.

8 Rearrange the columns of the table by dragging the Nozzle Type column header all
the way to the left-most column of the table.

9 Add a line to the table, specifying the following column values (double click in a table
cell to add a value):

o Nozzle Type : Premium Composite Carbide

o Nozzle Cost: 150.00

o Nozzle Life: 125.00

10 Add a second line to the table, specifying the following column values:

o Nozzle Type : Mid-Life Composite Carbide

o Nozzle Cost: 100.00

o Nozzle Life: 85.00

11 Add a third line to the table, specifying the following column values:

o Nozzle Type : Low-Cost Composite Carbide

o Nozzle Cost: 50.00

o Nozzle Life: 45.00

12 Select Save from the File menu, or click in the toolbar, to save your changes.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 258

13 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

See Adding a Setup Option—Using List Mode to Access a Lookup Table for an example
of basing a process setup option on the entries in this table.

Modifying Taxonomy Modules
This section contains an example of modifying a process taxonomy module. The
example uses the custom process AbrasiveJet Cut (see Adding a New Process to a
Process Group), and focuses on the high-level cycle time formulas. The first two
sections sketch how to modify the AbrasiveJet Cut (which is copied from Laser Cut) so
that its cycle time calculations mimic those of Waterjet Cut. The last section illustrates a
further customization.

This section includes the following subsections:

▪ Modifying the Formula Table

▪ Modifying the Cycle Time Formulas

▪ Padding Cycle Time by Adding a Constant

For more information on taxonomy modules, see Process and Operation Taxonomy in
the chapter Working with Cost Model Logic.

Modifying the Formula Table

If you modify a taxonomy module to include new output formulas, you must modify its
associated formula table. This section shows you how to modify the AbrasiveJet Cut
formula table, copied from Laser Cut, so that it mimics Waterjet Cut.

Follow these steps to navigate to the formula table:

1 In the navigation pane, double-click AbrasiveJet Cut.

2 In the editing pane, click the CSL Modules tab. The formula table for the process
taxonomy file (named costTaxonomy) appears near the top of the editing pane.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 259

In this example, the process is new, and so is editable without an explicit override. To
modify inherited nodes, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

The process taxonomy module for AbrasiveJet Cut (following Waterjet Cut) has all the
output formulas that Laser Cut has, plus the following output formulas:

▪ bundleAbrasiveJetComputed

▪ bundleAbrasiveJetCountComputed

▪ defaultAbrasiveFlowRate

▪ defaultFeedRateLargeFeatures

▪ defaultFeedRateSmallFeatures

▪ defaultLargeFeatureFeedRate

▪ defaultMixingTubeDiam

▪ defaultOrificeDiam

▪ defaultSmallFeatureFeedRate

▪ defaultOrificeDiam

▪ rapidTraverseTime

(Note that if you’ve already defined a process setup option that refers to a formula, the
formula is automatically added to the formula table.)

For each formula listed above, follow these steps:

3 Click in the empty Formula Name field of the last line of the table.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 260

4 Enter information in the following fields:

o Formula Name: enter name of the formula (one of the names listed above)

o Display Name: enter the name as you want it to appear in end user tables and
reports.

o Unit Type Name: select the type of units for the formula value.

o Unit: units for the formula value. This field is not editable; it is determined by
the Unit Type Name field.

o Inverted Goodness: set this to false. (This toggles the red/green arrows in the
UI. By default ("false"), smaller values are considered desirable (as in the
case of costs), and therefore are displayed with green arrows. However, a
smaller value for an item such as feed rate could be considered a negative,
and setting Inverted Goodness to "true" allows it to be displayed with a red
arrow.)

o Display: set this to true if you want the formula value included in end user
tables and reports; set this to false otherwise.

o Dependency Tree Visibility: Set this value to determine the behavior of the right-
click Show Formula Dependencies command in the UI, so that it displays
information that is relevant to the end user.Possible settings are ALWAYS,
NEVER, WHEN_NONZERO, or unset. Currently the Formula Dependencies
window is populated only for direct and indirect rates. The "correct" setting for
a given formula is somewhat subjective, but here are some guidelines:

- WHEN_NONZERO – Use this if formula relevance is determined by another
setting such as a cost model variable or a site variable. To have formula
relevance be driven by these global toggles,you need to set the visibility to
WHEN_NONZERO and (when it is irrelevant in the calculation) force it to
evaluate to zero.

- NEVER – You would typically use this setting only when you have a formula
that does not show up in the UI, but which could be referenced in a
spreadsheet report. Or for a formula that will be used in PSOs and which is
collected by a parent node. Other possible uses would be for a standard
formula whose equations are not set up properly to display in the dialog, or
for an insignificant calculation such as a "fudge factor".

- ALWAYS – This is the most typical selection for new formulas. The formula
will show up in the dependency tree and the user will be able to see (and
override) the value directly from the Formula Dependencies window even if it
computes to zero.

Note: If Dependency Tree Visibility is unset, the behavior is the same as if it had been
set to ALWAYS.

o Overridable: set this to true if users should be able to override the value for this
formula in the UI.

Note: At the Site Cost Model level, this column is labeled Overridable At, and its
values define contexts in which the result of the particular formula can be
overridden: BRANCH, PROCESS, OPERATION, or
UTILIZATION_PROCESS.

o Description: enter an optional description of the formula.

5 Select Save from the File menu, or click in the toolbar, to save your changes.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 261

6 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Modifying the Cycle Time Formulas

This section contains an example of modifying cycle time formulas for AbrasiveJet Cut,
which is copied from Laser Cut. The calculations for AbrasiveJet cut (following Waterjet
Cut) differ from Laser Cut in the following major areas:

▪ Cycle time

▪ Feed rate

▪ Pierce time

▪ Expendable tooling costs

This example focuses on the high-level cycle time formulas for the AbrasiveJet Cut
process taxonomy module. To complete the modification of the process (copied from
Laser Cut), you must also modify formulas associated with expendable tooling in the
process taxonomy module, as well as formulas associated with feed rate and pierce time
in library modules. In addition, you must change the content of the child operation
modules as sketched at the end of step 7, below. (The Waterjet Cut process is fully
implemented along these lines.)

Follow these steps to modify the high-level cycle time formulas in the process taxonomy
module:

1 In the navigation pane, double-click AbrasiveJet Cut; in the editing pane, click the CSL
Modules tab.

2 Click next to cost Taxonomy. The CSL module appears in the editing pane.

In this example, the module is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

3 In the editing pane, remove the import of the library libContourCutting.csl.

This library contains calculations that are shared among processes such as Laser
Cut, Plasma Cut, and OxyFuel Cut. These calculations relate to cycle time, traverse
time, feed rates, and pierce time. AbrasiveJet Cut (following Waterjet Cut) does not
use this library, but instead uses its own formulas for these calculations.

4 After the other import lines, add the following:

 import libAbrasiveJetUtilities.csl

This library will contain utilities that contribute to the calculation of feed rates, pierce
times, bundle sizes, and expendable tooling costs. See Creating a New Library,
below.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 262

5 Replace the cycle time formula

 cycleTime = GetCycleTime_SheetMetal_LaserCut(processTime,

numOperators)

with

 cycleTime = GetCycleTime_SheetMetal_AbrasiveJetCut(processTime,

numOperators)

The function GetCycleTime_SheetMetal_AbrasiveJetCut must be defined in

libAccounting_SheetMetal.csl. See Modifying a Library Module, below. In this

and a related library, cycleTime is defined as the product of processTime and a

plant-variable-specified adjustment factor (a global adjustment that applies across all
processes in the process group). The value num_operators is not used in this

model; it is present only for consistency with the library functions for other sheet
metal processes.

6 At the end of the module replace the following formula:

 processTime = (sumOpsCycleTime + processCycleTime) /

machine.numHeads

with this formula:

 processTime = ((sumOpsCycleTime + processCycleTime) / _

 GetBundleAbrasiveJetCount) / machine.numNozzles

The function GetBundleAbrasiveJetCount should be defined in

libAbrasiveJetUtilities.csl. It determines the number of blanks that are

stacked and processed simultaneously.

7 Add these lines to the end of the module:

 sumOpsCycleTime = select sum(ops.cycleTime) from childOps ops //

secs / part

 processCycleTime = rapidTraverseTime

 rapidTraverseTime = numOps * (averageFeatureDistance / _

 machine.rapidTraverseRate) * SEC_PER_MIN

 numOps = select count(*) from childOps op

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 263

 numHoles = select count(op) from childOps op _

 where isSimpleHole(op) or isComplexHole(op)

 averageFeatureDistance = { _

 (((part.blankBoxLength + part.blankBoxWidth) / 2) / (numHoles

/ 2)) _

 if (numHoles > 0) _

 (part.blankBoxLength + part.blankBoxWidth) / 2) otherwise _

 }

 defaultFeedRateLargeFeatures = GetFeedRateLargeFeatures

 defaultFeedRateSmallFeatures = GetFeedRateSmallFeatures

The following formulas are defined in libAbrasiveJetUtilities.csl:

o GetFeedRateLargeFeatures

o GetFeedRateSmallFeatures

The feed rates are calculated here only to supply default-mode values to the feed
rate process setup options.

Feed rates are used in the child operations to calculate cut time for each edge (of the
blank or of a complex hole) and for each simple hole. Cut times are added to pierce
time (for the blank and each hole), to yield cycle times for child GCDs of the part.
These cycle times are summed in the formula sumOpsCycleTimes, above.

8 Select Save from the File menu, or click in the toolbar, to save your changes.

9 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Padding Cycle Time by Adding a Constant

AbrasiveJet Cut, as with Waterjet Cut and various other starting point processes,
provides an example of adjusting cycle time through multiplication by a plant-variable-
specified constant (see Modifying the Cycle Time Formulas). This is a global adjustment
factor that applies across all processes in the process group. Another form of adjustment
is the process-specific addition of (rather than multiplication by) a custom constant.
Custom constants can be supplied by plant variables (see Adding Plant Variables—
Padding Cycle Time), process setup options (see Adding a Setup Option—Padding
Cycle Time), or machine attributes (see Modifying a Machine Type—Padding Cycle
Time).

To pad AbrasiveCut’s cycle time in this way, follow these steps:

1 In the navigation pane, double-click AbrasiveJet Cut; in the editing pane, click the CSL
Modules tab.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 264

2 click next to cost Taxonomy. The CSL module appears in the editing pane.

In this example, the module is new, and so is editable without an explicit override.
For inherited modules, you must select Override Object from the Edit menu, or click the

override icon, , in the toolbar.

3 In the editing pane, find the cycleTime formula. Here is the formula for AbrasiveJet

Cut (see Modifying the Cycle Time Formulas):

 cycleTime = _

 GetCycleTime_SheetMetal_AbrasiveJetCut(processTime,

numOperators)

Supply the adjustment constant as a plant variable if the adjustment is the same
regardless of the machine selected (see Adding Plant Variables—Padding Cycle
Time). In this case, change the formula to this:

 cycleTime = _

 GetCycleTime_SheetMetal_AbrasiveJetCut(processTime,

numOperators) + _

 plant. AbrasiveJetCycleTimeAdditiveAdjustment

Supply the adjustment constant as a machine attribute to allow it vary according to
the selected machine (see Modifying a Machine Type—Padding Cycle Time). In this
case, change the formula to this:

 cycleTime = _

 GetCycleTime_SheetMetal_AbrasiveJetCut(processTime,

numOperators) + _

 machine.cycleTimeAdditiveAdjustment

Supply the adjustment constant as a process setup option if you want to allow the
end user to customize the adjustment (see Adding a Setup Option—Padding Cycle
Time). In this case, change the formula to this:

 cycleTime = _

 GetCycleTime_SheetMetal_AbrasiveJetCut(processTime,

numOperators) + _

 setup.cycleTimeAdditiveAdjustment

4 Select Save from the File menu, or click in the toolbar, to save your changes.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 265

5 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Adding and Modifying Library Modules
This section contains examples of adding and modifying CSL library modules as part of
the implementation of the custom process AbrasiveJet Cut (see Adding a New Process
to a Process Group). The first example creates a library that is specific to AbrasiveJet
Cut, and contains utilities that contribute to the calculation of feed rates, pierce times,
bundle sizes, and expendable tooling costs. The second example adds a cycle-time
related formula to the library libAccounting_SheetMetal.csl. This library is shared

across processes in the sheet metal process group. Both these libraries are imported by
the AbrasiveJet Cut process taxonomy file (see Modifying the Cycle Time Formulas).

This section includes the following subsections:

▪ Creating a New Library

▪ Modifying a Library Module

For more information on CSL, see CSL Language Overview in the chapter Working with
Cost Model Logic.

Creating a New Library

Follow these steps to create the new library for AbrasivJet Cut:

1 In the navigation pane, expand Global Cost Model Information, and click Globally
Available CSL/Lookup Tables.

2 In the editing pane, click Library CSL.

3 Select Override Object from the Edit menu, or click the override icon, , in the
toolbar.

4 Click near the top or bottom of the editing pane. Information fields for the new
library appear at bottom of the editing pane.

5 Scroll to the bottom of the editing pane, and replace new with
libAbrasiveJetUtilities.csl in the File Name field.

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 Scroll to the top of the editing pane, and click next to the name of the new library.
An empty CSL module appears in the editing pane.

8 Enter the contents of the new library. In real development, you would create the
contents from scratch. For the current example, since AbrasiveJet Cut is almost
identical to Waterjet Cut, you can copy the contents of libWaterjetUtilities.csl,

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 266

and replace Waterjet with AbrasiveJet and waterjet with abrasiveJet,

throughout.

9 Select Save from the File menu, or click in the toolbar, to save your changes.

10 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

Modifying a Library Module

Follow the steps below to add an AbrasiveJet Cut cycle time formula to the library
libAccounting_SheetMetal.csl. A complete implementation of AbrasiveJet Cut would

include similar modifications for several other quantities, such as labor time. labor cost,
and direct overhead cost.

1 In the navigation pane, expand Global Cost Model Information, and click Globally
Available CSL/Lookup Tables.

2 In the editing pane, click Library CSL.

3 Select Override Object from the Edit menu, or click the override icon, , in the
toolbar.

4 In the editing pane, click next to the name of the new library. The CSL module
appears in the editing pane.

5 Find the group of formulas whose names start with
GetCycleTime_SheetMetal_(type control-f to search, F3 for next, and Shift+F3 for

previous). Add the following formula at the end of the group:

 GetCycleTime_SheetMetal_WaterjetCut(processTime, numOperators) =

CycleTime0

Note that CycleTime0 is defined in the same library as follows:

 CycleTime0 = GetCycleTime(processTime, numOperators)

The function GetCycleTime is defined in libCommonAccounting.csl in terms of

processTime:

 GetCycleTime(processTime, numOperators) = _

 processTime * plant.cycleTimeAdjustmentFactor

The formula processTime is defined in the taxonomy file proper. See Modifying

the Cycle Time Formulas.

Common Task Examples CMWB User Guide

aPriori Version 2019 R2 267

6 Select Save from the File menu, or click in the toolbar, to save your changes.

7 To incorporate your changes into the cost model, select Publish Cost Model and VPE

from the File menu, or click in the toolbar.

aPriori Technologies, Inc.

300 Baker Avenue

Concord, MA 01742

www.apriori.com

	About This Guide
	Overview
	Related documents
	Typographic conventions
	Feedback and customer support

	1 Getting Started with the Cost Model Work Bench
	Starting and Exiting the CMWB
	Components of the CMWB Interface
	Working with Cost Models
	Opening and Closing Cost Models
	Importing and Exporting Cost Models
	Overriding Cost Model Objects
	Saving Cost Model Changes
	Publishing and Reverting Cost Models

	Working with Cost Model Data and Metadata
	Working with Cost Model Logic

	2 Working with Cost Model Data and Metadata
	Navigating to Global Data
	Navigating to the Data for a Process, Operation or Branch Node
	Navigating from the Template Graph to the Data for a Given Node
	Navigating from the Navigation Tree to the Data for a Given Process or Operation
	Navigating from the Navigation Tree to the Data for a Given Branch Node

	Working with Plant Variables
	Viewing and Modifying Cost Model Variables
	Viewing and Modifying VPE Variables
	Creating New Plant Variables
	Deleting Plant Variables

	Working with Lookup Tables
	Navigating to Lookup Tables
	Viewing and Modifying Lookup Tables
	Viewing and Modifying Lookup Table Definitions
	Creating Lookup Table Definitions
	Deleting Lookup Table Definitions
	Adding New Lookup Tables
	Removing Lookup Tables

	Working with Machine Metadata
	Viewing and Modifying Machine Types
	Adding Machine Types
	Deleting Machine Types
	Adding or Modifying a Machine Field for Multiple Processes

	Working with Material Metadata
	Viewing and Modifying Material Types
	Adding or Modifying a Material Field for Multiple Process Groups

	Working with Material Stock Metadata
	Viewing and Modifying Material Stock Types

	Working with Tool Shop Metadata
	Viewing and Modifying Tool Shop Types
	Adding Tool Shop Types
	Deleting Tool Shop Types
	Associating a Tool Shop Type with a Process
	Removing a Tool Shop Type from a Process

	Working with Tool Material Metadata
	Viewing and Modifying Tool Material Types
	Adding Tool Material Types
	Deleting Tool Material Types

	Working with Process Setup Options
	Navigating to Process Setup Options
	About Process Setup Options
	Modifying Process Setup Options
	Adding and Deleting Process Setup Options

	Including and Excluding GCD Types
	Working with Column Groups and Column Properties
	Working with Node Attributes
	Navigating to Node Attributes
	Adding, Removing, and Modifying Node Attributes
	Predefined Node Attributes
	2SetupMilling
	aggregationOperation
	allowNumOccurrencesOverride
	assignOpsWithActivePrimaryAxesFirst
	checkForRollingInRouting
	contourCuttingProcess
	coring
	costModeClass
	costPerimetersFirst
	disableRingedHoleGeneration
	displayOperationCategories
	displayInSPDialog
	finishGrinding
	generateRingedHoles
	generatorName
	hasPiercing
	hasPiloting
	hasPilotingOp
	hasSetupAxisKey
	ignoreUpperGtolBound
	inFoundryProcess
	isBarFeedLathe
	isGreenSand
	isPerimeterCut
	isPerimeterStampingProcess
	isPlasmaCutting
	isWaterjetCutting
	isRoughing
	MachiningNode
	mcdType
	operationCategory
	otherSecondaryProcesses
	PartiallyObstructedFaceMilling
	perimeterCutting
	Plasma Cutting
	PreviouslyCountersunk
	PreviouslyThreaded
	primaryGtolOp
	primaryHolemakingOp
	requiresRotationalAxes
	requiresSingleFaceStockTrim
	runFourthCostingPass
	selectMachineAfterOpAssignment
	SimpleHoleFinishing
	sortGcdsByFinishArea
	stockPrep
	supportsStripNesting
	supportsTruePartNesting
	threading
	toolMaterialKey
	useAdvancedUtilization
	userNamedProcess
	useSheetStock
	utilizationProcess
	Waterjet Cutting

	3 Working with Cost Model Logic
	CSL Language Overview
	Formulas
	Rules
	Advice Rules
	Imports
	Values
	Expressions
	Arithmetic
	String
	Boolean
	Conditional
	Function Invocation
	Query

	Line Continuation
	Comments
	Searching Within and Across CSL Modules
	Using the CSL Debugger
	Displaying the Debugger
	Adding Breakpoints
	Running the Debugger
	Dragging Items from the Inputs/Formula Results Tree
	Paths with One Collection
	Paths with Two Collections
	Paths with More than Two Collections

	CSL Reference Information

	Viewing and Editing CSL Modules
	Navigating to Global CSL Modules
	Navigating to the CSL Modules for a Given Node
	Viewing CSL Modules
	Editing CSL Modules
	Using Completion
	Defining CSL Code Templates

	Adding CSL Modules
	Deleting CSL Modules

	Creating and Deleting Processes, Operations, and Branch Nodes
	Creating and Copying Processes
	Creating a Process by Copying
	Creating a Process with Standard Taxonomy and Machine Selection Modules
	Creating a Process from Scratch

	Creating and Copying Operations
	Creating Branch Nodes
	Deleting Processes, Operations, and Branch Nodes

	Working with Formula Tables
	Adding a Formula to the Formula Table
	Controlling Whether a Custom Output Appears in the Part Details Tab

	Template Pruning
	Context of Evaluation
	Example

	Material Stock Selection
	Context of Evaluation
	Finding or Designating a Routing’s Stock Selector
	Stock Selector Input
	Stock Selector Outputs
	Example

	Process and Operation Optionality
	Context of Evaluation
	Example

	Process and Operation Feasibility
	Context of Evaluation
	Examples

	Machine Selection
	Context of Evaluation
	Example

	Tool Selection
	Process and Operation Taxonomy
	Context of Evaluation
	Example

	Working with Zero-or-More Nodes
	Working with Templates
	About Templates
	Viewing and Editing Templates

	4 Cost Engine Details
	Hierarchies
	Algorithm Overview
	Process Template Expansion and Pruning
	Material Stock Selection
	Feasibility and Machine Selection
	Operation Assignment
	Operation Costing
	Process Costing

	5 Cost Scripting Language Reference
	Overview
	Module Types
	Module Contents
	Values and Expressions

	Modules, Inputs, and Outputs
	Syntax
	Inputs
	Accessibility
	allOps
	BarShape
	childOps
	childResults
	ComplexHoleSubType
	constants
	defaultMachine
	Direction
	EdgeShape
	FormType
	gcd
	global
	HoleType
	InclusionStatus
	KeywayBottomType
	KeywayEndType
	material
	machine
	machines
	Lookup table identifiers
	op
	part
	PartingType
	passNumber
	perCosting
	perRouting
	plant
	RelationType
	results
	setup
	SetupDirectionType
	SetupType
	site
	stock
	tool
	tools
	toolShop
	TurningApproach
	VoidShape

	Outputs
	Taxonomy Modules
	Feasibility Modules
	Stock Selection Modules
	Machine Selection Modules
	Tool Selection Modules
	Template Pruning Modules
	Optionality Modules

	Return Values

	Imports
	Formulas and Rules
	Formulas
	Set Blocks
	Example
	Example

	Rules
	Messages
	Advice Rules
	Advice
	Function Definitions

	Expressions
	Arithmetic Expressions
	String Expressions
	Boolean Expressions
	Conditional Expressions
	Function Invocations
	Query Expressions
	Select clause
	From clause
	Examples

	Foreach Expressions
	With Clause

	Like Expressions
	Example

	Identifiers and Literals
	Simple Identifiers
	Complex Identifiers
	Examples

	Numerical Literals
	String Literals
	Boolean Literals

	Comments and Line Continuation
	Predefined Functions
	Numeric Functions
	abs(x)
	acos(x)
	asin(x)
	atan(x)
	cos(x)
	divZero(x, y)
	equalsEps(x, y, z)
	exp(x)
	interpolate(x, x0, x1, y0, y1)
	len(x)
	ln(x)
	max(x, y, z, ...)
	maxNonNegativeNumber(x, y, z, ...)
	min(x, y, z, ...)
	minNonNegativeNumber(x, y, z, ...)
	round(x)
	roundEps(x, y)
	rounddown(x)
	roundup(x)
	sin(x)
	sqrt(x)
	sum(x, y, z, ...)
	tan(x)
	getProperty(row, column)

	String Functions
	Conversion Functions
	asNumber(s)
	asString(n)
	downCase(s)
	upcase(s)
	Index Functions
	index(s1, s2)
	index(s1, s2, i)
	lastIndex(s1, s2)
	lastIndex(s1, s2, i)
	len(s)
	Substring Functions
	mid(s, i)
	mid(s, i, j)
	prefix(s1, s2)
	suffix(s1, s2)
	suffix2(s1, s2)

	List Functions
	asPair(object-1, object-2)
	asList(element-1, … , element-n)
	listCons(newHead, list)
	listAsString(list, [separator])
	listFirst(list)
	listGet(list, i)
	listRest(list)
	listReverse(list)
	listSize(list)
	Example

	Map Functions
	asMap(key-1, value-1, ... key-n, value-n)
	asOrderedMap(key-1, value-1, ... key-n, value-n)
	mapGet(map, key)
	mapPut(map, key, value)

	Node Attribute Functions
	getAttributeValue(op, attributeName)
	getAttributeValueAsBoolean(op, attributeName)
	getAttributeValueAsNumber(op, attributeName)
	getNodeInTree(op, attributeName)
	hasAttribute(op, attributeName)
	hasNodeInTree(op, attributeName)
	hasNodeInTreeWithTrueValue(op, attributeName)
	Examples

	Routing Navigation Functions
	isNodePrecededBy(node, precedingNodeName)

	Error Handling Functions
	assert(val, ruleName)
	assert(val, ruleName, message)
	fail(message)
	msg(x, y, ...)

	Interpolation Function
	interpolate(x, x0, x1, y0, y1)

	Miscellaneous Functions
	calculateNesting(op)
	dtcMessage(field-name-1, field-value-1, ... field-name-n, field-value-n)
	gcdNeedsCam(artifact, coDirectionalEpsilon)
	getAngleBetweenPartStripFlowAndSetupAxis(holeSetupAxis, normalVector, eastDirection)
	getDistanceToPartFrontEnd(turningAxis, Gcd)
	getFlattenedOps(op)
	getCamAssignments(holes, codirectionalEpsilon, minimumDistanceBetweenHoles, rows)
	isTrue(string)
	isNodePrecededBy(node, precedingNodeName)
	safeEval(expression, defaultValue)
	safeGet(x, altVal)
	getSlidesAndLiftersForGCDs(gcds, maxGCDPitch, maxActionLength, minimumLifterClearance, drawDirectionOrthogonalEpsilon)
	getAssociatedSlides(gcd, slideList, forLengthWise)
	getAssociatedSlideBundles(gcd, slideBundleList, forLengthWise)
	postMessageAndReturnValue(value, message)
	getClockAngle(normalDirection, noonDirection, clockDirection)
	hasField(obj, fieldName)
	getFinishedArea(plantRMillPercentile, gcd, op)

	6 Common Task Examples
	Adding a New Process to a Process Group
	Creating a New Process from Scratch
	Creating a New Process from an Existing Process
	Copying the Process
	Renaming the Operations
	Adding Operations

	Adding New Processes and Operations to Templates
	Navigating to and Modifying Templates
	Modifying the Process-level Routings
	Modifying the Operation-level Routings

	Defining and Modifying Machine Types
	Defining a Machine Type for a New Process
	Modifying a Machine Type—Padding Cycle Time
	Modifying a Machine Type—Preferring One Class of Machines Over Another

	Modifying Machine Selection
	Removing unwanted machine checks
	Preferring One Class of Machines Over Another

	Adding Feasibility Rules
	Adding New Plant Variables
	Adding Plant Variables for a New Process
	Adding Plant Variables—Padding Cycle Time

	Adding New Process Setup Options
	Adding a Setup Option—Using CSL, Formula, and User Modes
	Adding a Setup Option—Using List Mode to Access a Lookup Table
	Adding a Setup Option—Padding Cycle Time

	Adding Lookup Tables
	Adding a Lookup Table Definition
	Adding a Lookup Table

	Modifying Taxonomy Modules
	Modifying the Formula Table
	Modifying the Cycle Time Formulas
	Padding Cycle Time by Adding a Constant

	Adding and Modifying Library Modules
	Creating a New Library
	Modifying a Library Module

